Share:


Early detection of vessel collision situations in a vessel traffic services area

Abstract

This study presents enhanced collision detection model in a Vessel Traffic Services (VTS) area. The proposed detection method of collision situations is based on the assumption that VTS station is provided with passage plans of all the vessels in a monitored area. By using an early detection model for prediction of possible collision situations, VTS stations could switch from the area-monitoring concept to the passage-monitoring system. An early detection model of collision risks in a VTS area uses vessels’ dynamic characteristics as inputs (vessels’ position, course over ground and speed), and delivers prediction of their future positions as output. In order to achieve the desired accuracy, the model takes into the account the intended course alterations and the impending environmental loads. The model is able to provide the outputs as early as the passage plans are submitted to a VTS monitored area. Hence, when discussing model’s capability for early detection of collision situations, improved VTS operating standards could be developed in order to achieve safer passages through enhanced collision avoidance strategies. Simulation results clearly show the advantages of the proposed model as a decision support tool for a VTS operator when combining passage plans with the analysis of environmental loads.


First published online 18 November 2019

Keyword : vessel, passage plan, VTS, collision early detection, collision avoidance, position prediction

How to Cite
Rudan, I., Frančić, V., Valčić, M., & Sumner, M. (2020). Early detection of vessel collision situations in a vessel traffic services area. Transport, 35(2), 121-132. https://doi.org/10.3846/transport.2019.11464
Published in Issue
Apr 3, 2020
Abstract Views
1785
PDF Downloads
868
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Bukhari, A. C.; Tusseyeva, I.; Lee, B.-G.; Kim, Y.-G. 2013. An intelligent real-time multi-vessel collision risk assessment system from VTS view point based on fuzzy inference system, Expert Systems with Applications 40(4): 1220–1230. https://doi.org/10.1016/j.eswa.2012.08.016

Chauvin, C.; Lardjane, S.; Morel, G.; Clostermann, J.-P.; Langard, B. 2013. Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS, Accident Analysis & Prevention 59: 26–37. https://doi.org/10.1016/j.aap.2013.05.006

DHMZ. 2018. ALADIN/HR – Wind Dynamical Adaptation for Istra & Kvarner. Croatian Meteorological and Hydrological Service (Državni hidrometeorološki zavod – DHMZ). Available from Internet: http://meteo.hr/index_en.php

Donderi, D. C.; Mercer, R.; Hong, M. B.; Skinner, D. 2004. Simulated navigation performance with marine electronic chart and information display systems (ECDIS), Journal of Navigation 57(2): 189–202. https://doi.org/10.1017/S0373463304002668

Filipowicz, W. 2004. Vessel traffic control problems, Journal of Navigation 57(1): 15–24. https://doi.org/10.1017/S0373463303002480

Fujii, Y.; Tanaka, K. 1971. Traffic capacity, Journal of Navigation 24(4): 543–552. https://doi.org/10.1017/S0373463300022384

Goerlandt, F.; Kujala, P. 2011. Traffic simulation based ship collision probability modeling, Reliability Engineering & System Safety 96(1): 91–107. https://doi.org/10.1016/j.ress.2010.09.003

Goodwin, E. M. 1975. A statistical study of ship domains, Journal of Navigation 28(3): 328–344. https://doi.org/10.1017/S0373463300041230

Gran, S. 1999. The impact of transportation on wildlife in the Malacca Straits, TED Case Studies 9(3): 573.

Gustafsson, N.; Berre, L.; Hörnquist, S.; Huang, X.-Y.; Lindskog, M.; Navascués, B.; Mogensen, K. S.; Thorsteinsson, S. 2001. Three-dimensional variational data assimilation for a limited area model, Tellus A: Dynamic Meteorology and Oceanography 53(4), 425–446. https://doi.org/10.3402/tellusa.v53i4.12198

Harati-Mokhtari, A.; Wall, A.; Brooks, P.; Wang, J. 2007. Automatic identification system (AIS): data reliability and human error implications, Journal of Navigation 60(3): 373–389. https://doi.org/10.1017/S0373463307004298

He, Y.; Jin, Y.; Huang, L.; Xiong, Y.; Chen, P.; Mou, J. 2017. Quantitative analysis of COLREG rules and seamanship for autonomous collision avoidance at open sea, Ocean Engineering 140: 281–291. https://doi.org/10.1016/j.oceaneng.2017.05.029

ISL. 2018. World merchant fleet, in Shipping Statistics and Market Review 62(1/2), Institute of Shipping Economics and Logistics (ISL), Bremen, Germany, 62 p.

Kao, S.-L.; Lee, K.-T.; Chang, K.-Y.; Ko, M.-D. 2007. A fuzzy logic method for collision avoidance in vessel traffic service, Journal of Navigation 60(1): 17–31. https://doi.org/10.1017/S0373463307003980

Kim, M.; Hizir, O.; Turan, O.; Day, S.; Incecik, A. 2017. Estimation of added resistance and ship speed loss in a seaway, Ocean Engineering 141: 465–476. https://doi.org/10.1016/j.oceaneng.2017.06.051

Kop, G. 1990. General principles of VTS and the IMO guidelines, in D. J. Sanders (Ed.). The Nautical Institute on Pilotage and Shiphandling, 205–208.

Last, P.; Hering-Bertram, M.; Linsen, L. 2015. How automatic identification system (AIS) antenna setup affects AIS signal quality, Ocean Engineering 100: 83–89. https://doi.org/10.1016/j.oceaneng.2015.03.017

Lind, M.; Bergmann, M.; Hägg, M.; Karlsson, F.; Siwe, U.; Watson, R. T. 2018. Sea traffic management – the route to the future, in Proceedings of the 17th Conference on Computer Applications and Information Technology in the Maritime Industries COMPIT’18, 14–16 May 2018, Pavone, Italy, 504–509.

Liu, Z.; Liu, J.; Li, Z.; Liu, R. W.; Xiong, N. 2017. Characteristics analysis of vessel traffic flow and its mathematical model, Journal of Marine Science and Technology 25(2): 230–241. https://doi.org/10.6119/JMST-017-0109-1 (in Chinese).

Mao, W.; Rychlik, I.; Wallin, J.; Storhaug, G. 2016. Statistical models for the speed prediction of a container ship, Ocean Engineering 126: 152–162. https://doi.org/10.1016/j.oceaneng.2016.08.033

MarineTraffic. 2018. Global Ship Tracking Intelligence. Available from Internet: https://www.marinetraffic.com

Mou, J. M.; Van der Tak, C.; Ligteringen, H. 2010. Study on collision avoidance in busy waterways by using AIS data, Ocean Engineering 37(5–6): 483–490. https://doi.org/10.1016/j.oceaneng.2010.01.012

Nádeník, Z. 2004. Legendre theorem on spherical triangles, in 50 years of the Research Institute of Geodesy, Topography and Cartography, Zdiby, Czech Republic, 41–48.

Ou, Z.; Zhu, J. 2008. AIS database powered by GIS technology for maritime safety and security, Journal of Navigation 61(4): 655–665. https://doi.org/10.1017/S0373463308004888

Pietrzykowski, Z. 2008. Ship’s fuzzy domain – a criterion for navigational safety in narrow fairways, Journal of Navigation 61(3): 499–514. https://doi.org/10.1017/S0373463308004682

Porretta, M.; Dupuy, M.-D.; Schuster, W.; Majumdar, A.; Ochieng, W. 2008. Performance evaluation of a novel 4d trajectory prediction model for civil aircraft, Journal of Navigation 61(3): 393–420. https://doi.org/10.1017/S0373463308004761

Porretta, M.; Schuster, W.; Majumdar, A.; Ochieng, W. 2010. Strategic conflict detection and resolution using aircraft intent information, Journal of Navigation 63(1): 61–88. https://doi.org/10.1017/S0373463309990270

Prpić-Oršić, J.; Faltinsen, O. M. 2012. Estimation of ship speed loss and associated CO2 emissions in a seaway, Ocean Engineering 44: 1–10. https://doi.org/10.1016/j.oceaneng.2012.01.028

Robertson, L.; Langner, J.; Engardt, M. 1999. An Eulerian limited-area atmospheric transport model, Journal of Applied Meteorology 38(2): 190–210. https://doi.org/10.1175/1520-0450(1999)038%3C0190:AELAAT%3E2.0.CO;2

Rudan, I.; Komadina, P.; Ivče, R. 2012. Officers’ subjective near miss notion in situations of collision avoidance at sea, Promet – Traffic & Transportation 24(4): 317–322. https://doi.org/10.7307/ptt.v24i4.441

Sang, L.-Z.; Wall, A.; Mao, Z.; Yan, X.-P.; Wang, J. 2015. A novel method for restoring the trajectory of the inland waterway ship by using AIS data, Ocean Engineering 110: 183–194. https://doi.org/10.1016/j.oceaneng.2015.10.021

Smierzchalski, R. 1999. Evolutionary trajectory planning of ships in navigation traffic areas, Journal of Marine Science and Technology 4(1): 1–6. https://doi.org/10.1007/s007730050001

Statheros, T.; Howells, G.; Maier, K. 2008. Autonomous ship collision avoidance navigation concepts, technologies and techniques, Journal of Navigation 61(1): 129–142. https://doi.org/10.1017/S037346330700447X

STM. 2015. MONALISA 2.0. EU Project. Sea Traffic Management (STM), Swedish Maritime Administration. Available from Internet: https://www.stmvalidation.eu/projects/monalisa-2

STM. 2018a. STM EfficientFlow. EU Project. Sea Traffic Management (STM), Swedish Maritime Administration. Available from Internet: https://www.stmvalidation.eu/projects/efficientflow

STM. 2018b. STM Validation Project. EU Project. Sea Traffic Management (STM), Swedish Maritime Administration. Available from Internet: https://www.stmvalidation.eu/projects/stm-validation

Su, C.-M.; Chang, K.-Y.; Cheng, C.-Y. 2012. Fuzzy decision on optimal collision avoidance measures for ships in vessel traffic service, Journal of Marine Science and Technology 20(1): 38–48.

Szlapczynski, R. 2011. Evolutionary sets of safe ship trajectories: a new approach to collision avoidance, Journal of Navigation 64(1): 169–181. https://doi.org/10.1017/S0373463310000238

Szlapczynski, R.; Szlapczynska, J. 2016. An analysis of domain-based ship collision risk parameters, Ocean Engineering 126: 47–56. https://doi.org/10.1016/j.oceaneng.2016.08.030

Szlapczynski, R.; Szlapczynska, J. 2017. Review of ship safety domains: models and applications, Ocean Engineering 145: 277–289. https://doi.org/10.1016/j.oceaneng.2017.09.020

Tam, C. K.; Bucknall, R.; Greig, A. 2009. Review of collision avoidance and path planning methods for ships in close range encounters, Journal of Navigation 62(3): 455–476. https://doi.org/10.1017/S0373463308005134

Transas. 2011. Description of Transas Mathematical Model. Version 02.08, Transas Ltd. Available from Internet: https://www.transas.com

Tsou, M.-C. 2010a. Discovering knowledge from ais database for application in VTS, Journal of Navigation 63(3): 449–469. https://doi.org/10.1017/S0373463310000135

Tsou, M.-C. 2010b. Integration of a geographic information system and evolutionary computation for automatic routing in coastal navigation, Journal of Navigation 63(2): 323–341. https://doi.org/10.1017/S0373463309990385

Tsou, M.-C. 2016. Multi-target collision avoidance route planning under an ECDIS framework, Ocean Engineering 121: 268–278. https://doi.org/10.1016/j.oceaneng.2016.05.040

Tsou, M.-C.; Kao, S.-L.; Su, C.-M. 2010. Decision support from genetic algorithms for ship collision avoidance route planning and alerts, Journal of Navigation 63(1): 167–182. https://doi.org/10.1017/S037346330999021X

Valčić, M.; Antonić, R.; Tomas, V. 2011. ANFIS based model for ship speed prediction, Brodogradnja / Shipbuilding 62(4): 373–382.

Wang, N.; Meng, X.; Xu, Q.; Wang, Z. 2009. A unified analytical framework for ship domains, Journal of Navigation 62(4): 643–655. https://doi.org/10.1017/S0373463309990178

Westerlund, K. 2010. The Collection of FSA Studies in the Baltic Sea Area. Efficient, Safe and Sustainable Traffic at Sea (EfficienSea): Baltic Sea Region Programme 2007–2013. Deliverable No. D WP6 4 05. Contract No. 013. 49 p. Available from Internet: http://efficiensea.org/files/mainoutputs/wp6/d_wp6_4_2.pdf

Zhang, W.; Goerlandt, F.; Kujala, P.; Wang, Y. 2016. An advanced method for detecting possible near miss ship collisions from AIS data, Ocean Engineering 124: 141–156. https://doi.org/10.1016/j.oceaneng.2016.07.059

Zhang, W.; Goerlandt, F.; Montewka, J.; Kujala, P. 2015. A method for detecting possible near miss ship collisions from AIS data, Ocean Engineering 107: 60–69. https://doi.org/10.1016/j.oceaneng.2015.07.046