Share:


Integrating the BWM and TOPSIS algorithm to evaluate the optimal token exchanges platform in Taiwan

    Wei-Yuan Wang Affiliation
    ; Yeh-Cheng Yang Affiliation
    ; Chun-Yueh Lin Affiliation

Abstract

This research presents procedures for determining the optimal solution of token exchanges platform for investors in Taiwan via integrating the best-worst method (BWM) and the technique for ordering preference by similarity to the ideal solution (TOPSIS). Firstly, this research applies the modified Delphi method to develop the perspectives and factors via literature review and experts opinion. Secondly, the BWM is implemented to obtain weights of perspectives and factors on the linear programming concept. Thirdly, the TOPSIS model is used to rank the optimal solution of the token exchange for investors or corporations. Finally, the proposed model BWMTOPSIS-based procedures will list the optimal token exchanges platform on the three token exchange platforms to investors or corporations in Taiwan on the basis of their rankings in the architecture. The proposed combination framework is able to provide academic and commerce support to investors or corporations in implementing the token into their portfolio as a valuable objective guide to determine the optimal token exchange platform.


First published online 09 December 2021

Keyword : bitcoin, token exchange platform, decision-making, Delphi method, Best-Worst Method (BWM), TOPSIS

How to Cite
Wang, W.-Y., Yang, Y.-C., & Lin, C.-Y. (2022). Integrating the BWM and TOPSIS algorithm to evaluate the optimal token exchanges platform in Taiwan . Technological and Economic Development of Economy, 28(2), 358–380. https://doi.org/10.3846/tede.2021.15935
Published in Issue
Feb 23, 2022
Abstract Views
1149
PDF Downloads
772
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Achu, A. L., Thomas, J., & Reghunath, R. (2020). Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundwater for Sustainable Development, 10, 100365. https://doi.org/10.1016/j.gsd.2020.100365

Ahluwalia, S., Mahto, R. V., & Guerrero, M. (2020). Blockchain technology and startup financing: A transaction cost economics perspective. Technological Forecasting and Social Change, 151, 119854. https://doi.org/10.1016/j.techfore.2019.119854

Alexander, C., Choi, J., Massie, H. R., & Sohn, S. (2020). Price discovery and microstructure in ether spot and derivative markets. International Review of Financial Analysis, 71, 101506. https://doi.org/10.1016/j.irfa.2020.101506

Ali-Yrkko, J., Rouvinen, P., Seppala, T., & Yla-Anttila, P. (2011). Who captures value in global supply chains? Case Nokia N95 Smartphone. Journal of Industry, Competition and Trade, 11(3), 263–278. https://doi.org/10.1007/s10842-011-0107-4

Andrada-Félix, J., Fernandez-Perez, A., & Sosvilla-Rivero, S. (2020). Distant or close cousins: Connectedness between cryptocurrencies and tradi-tional currencies volatilities. Journal of International Financial Markets, Institutions and Money, 67, 101219. https://doi.org/10.1016/j.intfin.2020.101219

Arslanian, H., & Fischer, F. (2019). The crypto-asset ecosystem. In The future of finance (pp. 157–163). Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-14533-0_13

Aziz, A. T. I. F. (2019). Cryptocurrency: Evolution & legal dimension. International Journal of Business, Economics and Law, 18(4), 31–33.

Baidya, R., Dey, P. K., Ghosh, S. K., & Petridis, K. (2018). Strategic maintenance technique selection using combined quality function deployment, the analytic hierarchy process and the benefit of doubt approach. The International Journal of Advanced Manufacturing Technology, 94(1–4), 31–44. https://doi.org/10.1007/s00170-016-9540-1

Bentov, I., Ji, Y., Zhang, F., Breidenbach, L., Daian, P., & Juels, A. (2019, November). Tesseract: Real-time cryptocurrency exchange using trust-ed hardware. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (pp. 1521–1538). https://doi.org/10.1145/3319535.3363221

Bouri, E., Lau, C. K. M., Lucey, B., & Roubaud, D. (2019). Trading volume and the predictability of return and volatility in the cryptocurrency market. Finance Research Letters, 29, 340–346. https://doi.org/10.1016/j.frl.2018.08.015

Brauneis, A., & Mestel, R. (2019). Cryptocurrency-portfolios in a mean-variance framework. Finance Research Letters, 28, 259–264. https://doi.org/10.1016/j.frl.2018.05.008

Bunjaku, F., Gorgieva-Trajkovska, O., & Miteva-Kacarski, E. (2017). Cryptocurrencies – advantages and disadvantages. Journal of Economics, 2(1), 31–39.

Chen, Y., & Bellavitis, C. (2020). Blockchain disruption and decentralized finance: The rise of decentralized business models. Journal of Business Venturing Insights, 13, e00151. https://doi.org/10.1016/j.jbvi.2019.e00151

Chuen, D. L. K., Guo, L., & Wang, Y. (2018). Cryptocurrency: A new investment opportunity? The Journal of Alternative Investments, 20(3), 16–40. https://doi.org/10.3905/jai.2018.20.3.016

Coin Market Cap. (2020). Cryptocurrencies by market capitalization. Retrieved August 25, 2020, from https://coinmarketcap.com/

CoinGecko. (2020a). NEXO market capitals. Retrieved July 09, 2020, from https://www.coingecko.com/en/coins/nexo#markets

CoinGecko. (2020b). Celsius network market capitals. Retrieved July 09, 2020, from https://www.coingecko.com/en/coins/celsius-network-token

Conrad, C., Custovic, A., & Ghysels, E. (2018). Long-and short-term cryptocurrency volatility components: A GARCH-MIDAS analysis. Journal of Risk and Financial Management, 11(2), 23. https://doi.org/10.3390/jrfm11020023

Corbet, S., Larkin, C., Lucey, B., Meegan, A., & Yarovaya, L. (2020). Cryptocurrency reaction to FOMC Announcements: Evidence of heteroge-neity based on blockchain stack position. Journal of Financial Stability, 46, 100706. https://doi.org/10.1016/j.jfs.2019.100706

DeFi Market Cap. (2020). Top 100 Defi Tokens by market capitalization. Retrieved January 09, 2010, from https://defimarketcap.io/

Easley, D., O’Hara, M., & Basu, S. (2019). From mining to markets: The evolution of bitcoin transaction fees. Journal of Financial Economics, 134(1), 91–109. https://doi.org/10.1016/j.jfineco.2019.03.004

Enoksen, F. A., Landsnes, C. J., Lučivjanská, K., & Molnár, P. (2020). Understanding risk of bubbles in cryptocurrencies. Journal of Economic Behavior & Organization, 176, 129–144. https://doi.org/10.1016/j.jebo.2020.05.005

Ghosh, A., Gupta, S., Dua, A., & Kumar, N. (2020). Security of Cryptocurrencies in blockchain technology: State-of-art, challenges and future prospects. Journal of Network and Computer Applications, 163, 102635. https://doi.org/10.1016/j.jnca.2020.102635

Hamdan, S., & Cheaitou, A. (2017). Supplier selection and order allocation with green criteria: An MCDM and multi-objective optimization ap-proach. Computers & Operations Research, 81, 282–304. https://doi.org/10.1016/j.cor.2016.11.005

Hasson, F., & Keeney, S. (2011). Enhancing rigour in the Delphi technique research. Technological Forecasting and Social Change, 78(9), 1695–1704. https://doi.org/10.1016/j.techfore.2011.04.005

Ho, W., & Ma, X. (2018). The state-of-the-art integrations and applications of the analytic hierarchy process. European Journal of Operational Research, 267(2), 399–414. https://doi.org/10.1016/j.ejor.2017.09.007

Hwang, C., & Yoon, K. (1981). Multiple attribute decision making: Methods and application. Springer Publications. https://doi.org/10.1007/978-3-642-48318-9

Issaoui, Y., Khiat, A., Bahnasse, A., & Ouajji, H. (2019). Smart logistics: Study of the application of blockchain technology. Procedia Computer Science, 160, 266–271. https://doi.org/10.1016/j.procs.2019.09.467

Ivaniuk, V. (2020). Cryptocurrency exchange regulation – An international review. Studia Prawnoustrojowe, 48, 67–77.

Kamaruzzaman, S. N., Lou, E. C. W., Wong, P. F., Wood, R., & Che-Ani, A. I. (2018). Developing weighting system for refurbishment building assessment scheme in Malaysia through analytic hierarchy process (AHP) approach. Energy Policy, 112, 280–290. https://doi.org/10.1016/j.enpol.2017.10.023

Kheybari, S., Kazemi, M., & Rezaei, J. (2019). Bioethanol facility location selection using best-worst method. Applied energy, 242, 612–623. https://doi.org/10.1016/j.apenergy.2019.03.054

Kilic, B., & Ucler, C. (2019). Stress among ab-initio pilots: A model of contributing factors by AHP. Journal of Air Transport Management, 80, 101706. https://doi.org/10.1016/j.jairtraman.2019.101706

Kimani, D., Adams, K., Attah-Boakye, R., Ullah, S., Frecknall-Hughes, J., & Kim, J. (2020). Blockchain, business and the fourth industrial revolu-tion: Whence, whither, wherefore and how? Technological Forecasting and Social Change, 161, 120254. https://doi.org/10.1016/j.techfore.2020.120254

Kumar, G., Saha, R., Buchanan, W. J., Geetha, G., Thomas, R., Rai, M. K., Kim, T.-H. & Alazab, M. (2020). Decentralized accessibility of e-commerce products through blockchain technology. Sustainable Cities and Society, 62, 102361. https://doi.org/10.1016/j.scs.2020.102361

Libra Association. (2019). Libra White Paper. Retrieved August 26, 2020, from https://libra.org/en-US/white-paper/

Lin, C. Y. (2020). Optimal core operation in supply chain finance ecosystem by integrating the fuzzy algorithm and hierarchical framework. Inter-national Journal of Computational Intelligence Systems, 13(1), 259–274. https://doi.org/10.2991/ijcis.d.200226.001

Lin, S. W. (2017). Identifying the critical success factors and an optimal solution for mobile technology adoption in travel agencies. International Journal of Tourism Research, 19(2), 127–144. https://doi.org/10.1002/jtr.2092

Lee, J. Y. (2019). A decentralized token economy: How blockchain and cryptocurrency can revolutionize business. Business Horizons, 62(6), 773–784. https://doi.org/10.1016/j.bushor.2019.08.003

Lee, S., Kim, B. S., Kim, Y., Kim, W., & Ahn, W. (2018). The framework for factors affecting technology transfer for suppliers and buyers of technology in Korea. Technology Analysis & Strategic Management, 30(2), 172–185. https://doi.org/10.1080/09537325.2017.1297787

Liang, F., Brunelli, M., & Rezaei, J. (2020). Consistency issues in the best worst method: Measurements and thresholds. Omega, 96, 102175. https://doi.org/10.1016/j.omega.2019.102175

Linden, G., Kraemer, K. L., & Dedrick, J. (2009). Who captures value in a global innovation network? The case of Apple’s iPod. Communications of the ACM, 52(3), 140–144. https://doi.org/10.1145/1467247.1467280

Liu, W., Semeyutin, A., Lau, C. K. M., & Gozgor, G. (2020). Forecasting Value-at-Risk of Cryptocurrencies with RiskMetrics type models. Re-search in International Business and Finance, 54, 101259. https://doi.org/10.1016/j.ribaf.2020.101259

Luo, X. (2019). Application and evaluation of payment channel in hybrid decentralized Ethereum token exchange [Doctoral dissertation]. Univer-sity of British Columbia.

Luo, X., Cai, W., Wang, Z., Li, X., & Leung, C. V. (2019, May). A payment channel based hybrid decentralized ethereum token exchange. In 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (pp. 48–49). IEEE. https://doi.org/10.1109/BLOC.2019.8751454

Ma, F., Liang, C., Ma, Y., & Wahab, M. I. M. (2020). Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach. Journal of Forecasting, 39(8), 1277–1290. https://doi.org/10.1002/for.2691

Malek, J., & Desai, T. N. (2019). Prioritization of sustainable manufacturing barriers using Best Worst Method. Journal of Cleaner Production, 226, 589–600. https://doi.org/10.1016/j.jclepro.2019.04.056

Martino, P., Wang, K. J., Bellavitis, C., & DaSilva, C. M. (2019). An introduction to blockchain, cryptocurrency and initial coin offerings. In New frontiers in entrepreneurial finance research (pp. 181–206). World Scientific Publishing. https://doi.org/10.1142/9789811202766_0007

Matkovskyy, R. (2019). Centralized and decentralized bitcoin markets: Euro vs USD vs GBP. The Quarterly Review of Economics and Finance, 71, 270–279. https://doi.org/10.1016/j.qref.2018.09.005

Moin, A., Sirer, E. G., & Sekniqi, K. (2019). A classification framework for stablecoin designs. arXiv preprint arXiv:1910.10098

Nabilou, H. (2019). How to regulate bitcoin? Decentralized regulation for a decentralized cryptocurrency. International Journal of Law and Infor-mation Technology, 27(3), 266–291. https://doi.org/10.1093/ijlit/eaz008

Nizamuddin, N., Salah, K., Azad, M. A., Arshad, J., & Rehman, M. H. (2019). Decentralized document version control using ethereum blockchain and IPFS. Computers & Electrical Engineering, 76, 183–197. https://doi.org/10.1016/j.compeleceng.2019.03.014

Nourmohamadi Shalke, P., Paydar, M. M., & Hajiaghaei-Keshteli, M. (2018). Sustainable supplier selection and order allocation through quantity discounts. International Journal of Management Science and Engineering Management, 13(1), 20–32. https://doi.org/10.1080/17509653.2016.1269246

Omrani, H., Amini, M., & Alizadeh, A. (2020). An integrated group best-worst method – Data envelopment analysis approach for evaluating road safety: A case of Iran. Measurement, 152, 107330. https://doi.org/10.1016/j.measurement.2019.107330

Pamučar, D., Ecer, F., Cirovic, G., & Arlasheedi, M. A. (2020). Application of improved Best Worst Method (BWM) in Real-World Problems. Mathematics, 8(8), 1342. https://doi.org/10.3390/math8081342

Patel, M. M., Tanwar, S., Gupta, R., & Kumar, N. (2020). A deep learning-based cryptocurrency price prediction scheme for financial institutions. Journal of Information Security and Applications, 55, 102583. https://doi.org/10.1016/j.jisa.2020.102583

Pereira, J., Tavalaei, M. M., & Ozalp, H. (2019). Blockchain-based platforms: Decentralized infrastructures and its boundary conditions. Techno-logical Forecasting and Social Change, 146, 94–102. https://doi.org/10.1016/j.techfore.2019.04.030

Peters, G. W., Chapelle, A., & Panayi, E. (2016). Opening discussion on banking sector risk exposures and vulnerabilities from Virtual currencies: An Operational Risk perspective. Journal of Banking Regulation, 17(4), 239–272. https://doi.org/10.1057/jbr.2015.10

Poongodi, M., Sharma, A., Vijayakumar, V., Bhardwaj, V., Sharma, A. P., Iqbal, R., & Kumar, R. (2020). Prediction of the price of Ethereum blockchain cryptocurrency in an industrial finance system. Computers & Electrical Engineering, 81, 106527. https://doi.org/10.1016/j.compeleceng.2019.106527

Rehman, M. H. u., Salah, K., Damiani, E., & Svetinovic, D. (2019). Trust in blockchain cryptocurrency ecosystem. IEEE Transactions on Engi-neering Management, 67(4), 1196–1212. https://doi.org/10.1109/TEM.2019.2948861

Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57. https://doi.org/10.1016/j.omega.2014.11.009

Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126–130. https://doi.org/10.1016/j.omega.2015.12.001

Rezaei, J., van Roekel, W. S., & Tavasszy, L. (2018). Measuring the relative importance of the logistics performance index indicators using Best Worst Method. Transport Policy, 68, 158–169. https://doi.org/10.1016/j.tranpol.2018.05.007

Ricci, S., Ferreira, E., Menasche, D. S., Ziviani, A., Souza, J. E., & Vieira, A. B. (2018). Learning blockchain delays: A queueing theory approach. ACM SIGMETRICS Performance Evaluation Review, 46(3), 122–125. https://doi.org/10.1145/3308897.3308952

Roberti, F., Oberegger, U. F., Lucchi, E., & Troi, A. (2017). Energy retrofit and conservation of a historic building using multi-objective optimiza-tion and an analytic hierarchy process. Energy and Buildings, 138, 1–10. https://doi.org/10.1016/j.enbuild.2016.12.028

Schär, F. (2020). Decentralized finance: On blockchain- and smart contract-based financial markets. https://doi.org/10.2139/ssrn.3571335

Shapiro, D. C. (2018). Taxation and regulation in decentralized exchanges. Journal of Taxation of Investments, 36(1), 3–13.

Silfversten, E., Favaro, M., Slapakova, L., Ishikawa, S., Liu, J., & Salas, A. (2020). Exploring the use of Zcash cryptocurrency for illicit or crimi-nal purposes. Retrieved August 13, 2020, from https://www.rand.org/content/dam/rand/pubs/research_reports/RR4400/RR4418/RAND_RR4418.pdf

Singh, A., Click, K., Parizi, R. M., Zhang, Q., Dehghantanha, A., & Choo, K. K. R. (2020). Sidechain technologies in blockchain networks: An examination and state-of-the-art review. Journal of Network and Computer Applications, 149, 102471. https://doi.org/10.1016/j.jnca.2019.102471

Söylemez, Y. (2019). Cryptocurrency derivatives: The case of Bitcoin. In U. Hacioglu (Ed.), Blockchain economics and financial market innova-tion (pp. 515–530). Springer, Cham. https://doi.org/10.1007/978-3-030-25275-5_25

Sung, W. C. (2001). Application of Delphi method, a qualitative and quantitative analysis, to the healthcare management. Journal of Healthcare Management, 2(2), 11–19.

Tapscott, A., & Tapscott, D. (2017). How blockchain is changing finance. Harvard Business Review, 1(9), 2–5.

Tian, H., Xue, K., Li, S., Xu, J., Liu, J., & Zhao, J. (2020). Enabling cross-chain transactions: A decentralized cryptocurrency exchange protocol. arXiv preprint arXiv:2005.03199

van de Kaa, G., Kamp, L., & Rezaei, J. (2017). Selection of biomass thermochemical conversion technology in the Netherlands: A best worst method approach. Journal of Cleaner Production, 166, 32–39. https://doi.org/10.1016/j.jclepro.2017.07.052

Veisi, H., Liaghati, H., & Alipour, A. (2016). Developing an ethics-based approach to indicators of sustainable agriculture using analytic hierarchy process (AHP). Ecological Indicators, 60, 644–654. https://doi.org/10.1016/j.ecolind.2015.08.012

Vora, G. (2015). Cryptocurrencies: Are disruptive financial innovations here? Modern Economy, 6(7), 816. https://doi.org/10.4236/me.2015.67077

Walther, T., Klein, T., & Bouri, E. (2019). Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to fore-casting. Journal of International Financial Markets, Institutions and Money, 63, 101133. https://doi.org/10.1016/j.intfin.2019.101133

Wu, C. R., Lin, C. T., & Chen, H. C. (2007). Evaluating competitive advantage of the location for Taiwanese hospitals. Journal of Information and Optimization Sciences, 28(5), 841–868. https://doi.org/10.1080/02522667.2007.10699777

Xia, P., Wang, H., Zhang, B., Ji, R., Gao, B., Wu, L., Luo, X., & Xu, G. (2020). Characterizing cryptocurrency exchange scams. Computers & Security, 98, 101993. https://doi.org/10.1016/j.cose.2020.101993

Xu, Q., Zhang, Y., & Zhang, Z. (2021). Tail-risk spillovers in cryptocurrency markets. Finance Research Letters, 38, 101453. https://doi.org/10.1016/j.frl.2020.101453

You, P., Guo, S., Zhao, H., & Zhao, H. (2017). Operation performance evaluation of power grid enterprise using a hybrid BWM-TOPSIS method. Sustainability, 9(12), 2329. https://doi.org/10.3390/su9122329

Zhang, L., Xie, Y., Zheng, Y., Xue, W., Zheng, X., & Xu, X. (2020). The challenges and countermeasures of blockchain in finance and economics. Systems Research and Behavioral Science, 37(4), 691–698. https://doi.org/10.1002/sres.2710