Share:


Fourth-order pattern forming PDEs: partial and approximate symmetries

Abstract

This paper considers pattern forming nonlinear models arising in the study of thermal convection and continuous media. A primary method for the derivation of symmetries and conservation laws is Noether’s theorem. However, in the absence of a Lagrangian for the equations investigated, we propose the use of partial Lagrangians within the framework of calculating conservation laws. Additionally, a nonlinear Kuramoto-Sivashinsky equation is recast into an equation possessing a perturbation term. To achieve this, the knowledge of approximate transformations on the admissible coefficient parameters is required. A perturbation parameter is suitably chosen to allow for the construction of nontrivial approximate symmetries. It is demonstrated that this selection provides approximate solutions.

Keyword : pattern formation, optimal system of one-dimensional subalgebras, Lie symmetries, exact solutions

How to Cite
Jamal, S., & Johnpillai, A. G. (2020). Fourth-order pattern forming PDEs: partial and approximate symmetries. Mathematical Modelling and Analysis, 25(2), 198-207. https://doi.org/10.3846/mma.2020.10115
Published in Issue
Mar 18, 2020
Abstract Views
1342
PDF Downloads
964
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

V.A. Baikov, R.K. Gazizov and N.H. Ibragimov (Eds). CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 3. CRC Press, Boca Raton, Florida, 1996.

J. Belmonte-Beitia, V.M. P´erez-Garc´ıa, V. Vekslerchik and P.J. Torres. Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett., 98(064102), 2007. https://doi.org/10.1103/PhysRevLett.98.064102

D.J. Benney. Long waves on liquid films. J. Math. and Phys., 45:150–155, 1966. https://doi.org/10.1002/sapm1966451150

G. Caginal and P.C. Fife. Higher order phase field models and detailed anisotropy. Phys. Rev. B, 34:4940–4943, 1986. https://doi.org/10.1103/PhysRevB.34.4940

P. Collet and J.P. Eckmann. Instabilities and fronts in extended systems. Princeton Series in Physics, Princeton University Press, New Jersey, 1990. https://doi.org/10.1515/9781400861026

G.T. Dee and W. van Saarloos. Bistable systems with propagating fronts leading to pattern formation. Phys. Rev. Lett., 60:2641–2644, 1988. https://doi.org/10.1103/PhysRevLett.60.2641

P. Holmes, J.L. Lumley and G. Berkooz. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Univ. Press, Cambridge, 1996. https://doi.org/10.1017/CBO9780511622700


I. Hussain, F.M. Mahomed and A. Qadir. Approximate partial Noether operators of the Schwarzschild spacetime. J. Non. Math. Phys., 17(1):13–25, 2013. https://doi.org/10.1142/S1402925110000556

N.H. Ibragimov and V.F. Kovalev. Approximate and Renormgroup Symmetries. Springer-Verlag, Berlin, 2009. https://doi.org/10.1007/978-3-642-00228-1

S. Jamal. Solutions of quasi-geostrophic turbulence in multilayered configurations. Quaest. Math., 41:409–421, 2018. https://doi.org/10.2989/16073606.2017.1383947

S. Jamal and A. Mathebula. Generalized symmetries and recursive operators of some diffusive equations. Bull. Malays. Math. Sci. Soc., 42:697–706, 2019. https://doi.org/10.1007/s40840-017-0510-z

S.U. Jing-Rui, Z. Shun-Li and L. Ji-Na. Approximate Noether-type symmetries and conservation laws via partial Lagrangians for nonlinear wave equation with damping. Comm. Theor. Phys., 53:37–42, 2010. https://doi.org/10.1088/02536102/53/1/08

A.G. Johnpillai, K.S. Mahomed, C. Harley and F.M. Mahomed. Noether symmetry analysis of the dynamic Euler-Bernoulli beam equation. Z. Naturforsch, 71(5):447–456, 2016. https://doi.org/10.1515/zna-2015-0292

A.H. Kara and F.M. Mahomed. Noether-type symmetries and conservation laws via partial Lagrangians. Non. Dyn., 45:367–383, 2006. https://doi.org/10.1007/s11071-005-9013-9

T. Kawahara and S. Toh. Pulse interactions in an unstable dissipativedispersive nonlinear system. Phys. Fluids, 31:2103–2111, 1987. https://doi.org/10.1063/1.866610

A.H. Khater and R.S. Temsah. Numerical solutions of the generalized KuramotoSivashinsky equation by Chebyshev spectral collocation methods. Comp. Math. Appl., 56:1465–1472, 2008. https://doi.org/10.1016/j.camwa.2008.03.013

Y. Kuramoto and T. Tsuzuki. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys., 55:356, 1976. https://doi.org/10.1143/PTP.55.356

J. Lega, J.V. Moloney and A.C. Newell. Swift-Hohenberg equation for lasers. Phys. Rev. Lett., 73:2978–2981, 1994. https://doi.org/10.1103/PhysRevLett.73.2978

R. Naz. The applications of the partial Hamiltonian approach to mechanics and other areas. Int. J. Non. Mech., 86:1–6, 2016. https://doi.org/10.1016/j.ijnonlinmec.2016.07.009

R. Naz, F.M. Mahomed and A. Chaudhry. A partial Hamiltonian approach for current value Hamiltonian systems. Comm. Non. Sci. Num. Sim., 19(10):3600– 3610, 2014. https://doi.org/10.1016/j.cnsns.2014.03.023

M.C Nucci and G. Sanchini. Noether symmetries quantization and superintegrability of biological models. Symmetry, 8:1–9, 2016. https://doi.org/10.3390/sym8120155

P. Olver. Application of Lie Groups to Differential Equations. Springer, New York, 1993. https://doi.org/10.1007/978-1-4612-4350-2

S. Opanasenko, A. Bihlo and R.O. Popovych. Group analysis of general Burgers-Korteweg-de Vries equations. J. Math. Phys., 58:081511, 2017. https://doi.org/10.1063/1.4997574

J. Patera and P. Winternitz. Subalgebras of real three- and four-dimensional Lie algebras. Math. Phys., 88:1449–1455, 1977. https://doi.org/10.1063/1.523441

Y . Pomeau and P. Manneville. Wave length selection in cellular flows. Phys. Lett., 75(A):296–298, 1980. https://doi.org/10.1016/0375-9601(80)90568-X

W. Sarlet. A comment on ’Conservation laws of higher order nonlinear PDEs and the variational conservation laws in the class with mixed derivatives’. J. Phys. A Math. Theor., 43(45):458001, 2010. https://doi.org/10.1088/17518113/43/45/458001

G.I. Sivashinsky. Instabilities, pattern-formation, and turbulence in flames. Ann. Rev. Fluid Mech., 15:179–199, 1983. https://doi.org/10.1146/annurev.fl.15.010183.001143

J. Swift and P. Hohenberg. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A, 15:319–328, 1977. https://doi.org/10.1103/PhysRevA.15.319