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1 Introduction

The main goal of this manuscript is to devise an effective approximation algo-
rithm to treat a class of nonlinear second-order coupled system of equations in
the form of Emden-Fowler as follows
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x2pzq `
α

z
x1pzq ` fpx, yq “ hpzq,

y2pzq `
β

z
y1pzq ` gpx, yq “ kpzq,

z P r0, 1s, (1.1)

where α, β are two given positive constants, two functions h, k are known, and
we assume that the functions f, g are sufficiently smooth functions with respect
to their arguments. We supplement the following initial conditions

xp0q “ x0, x1p0q “ x1, yp0q “ y0, y1p0q “ y1. (1.2)

The Emden-Fowler equation arises in the study of fluid mechanic, gas dynamics
in astrophysics, relativistic mechanics, electrohydrodynamic flow in a cylinder,
nuclear physics, thermal explosions, oxygen diffusion in a spherical shell and
chemically reacting systems. For more information on various applications of
Emden-Fowler type equations, we refer the reader to [30]. In [32], Zou discussed
the existence of a solution to the general type of the coupled system (1.1) with
homogeneous Dirichlet boundary condition. The nonlinear differential equation
(1.1) has a singularity at the initial point z “ 0. Such equation arises in the
study of diverse physical and natural events in engineering and science, such as
population evolution, chemical reactions, pattern formation, and so on, see the
papers [9,18,32] and references therein. Due to the singularity and the existence
of nonlinear functions fpx, yq and gpx, yq, in some cases, it may be difficult or
impossible in obtaining the exact solution of coupled systems of Emden-Fowler
model equations. Therefore, the design of efficient approximation techniques
for tackling the singularity at z “ 0 and nonlinearity is an interesting task.

It is important to mention that extensive studies have been done on the nu-
merical solutions of scalar nonlinear singular differential equations, for example,
see [17, 20, 21, 22, 25]. On the other hand, several and various approximation
techniques have been developed for solving the coupled system of nonlinear and
singular differential equations. For instance, Kumbinarasaiah et al. [14] devel-
oped Bernoulli wavelets collocation technique (BWCT) for solving the coupled
system of nonlinear Lane-Emden equations. Madduri and Roul [15] used an
optimal homotopy analysis method to obtain the series solution of a system
of Lane-Emden equations appearing in catalytic diffusion reactions. The au-
thors of [19] and [29] employed Adomian decomposition method for obtaining
the series solution of the problem considered in [15]. The applications of the
modified form of the standard Adomian decomposition and optimal homotopy
analysis methods for obtaining the series solution of the coupled system of
Emden-Fowler-type equations considered in [5,6,26]. The variational iteration
procedure was used by Wazwaz [28] for solving the systems of Emden-Fowler
type equations. Moreover, Sabir et al. [24] studied neuro-swarm computational
heuristic approach for coupled Emden-Fowler system.
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It should be noticed that there are few papers on numerical solutions of
the coupled systems of Emden-Fowler equations (1.1). Furthermore, various
series solution methods, as stated above, were developed for solving the cou-
pled systems of singular differential equations. However, these methods are
not computationally efficient as large number of components in the series so-
lution are needed to obtain the results subjected to a high degree of accuracy.
The aim of this paper is to design a robust computational technique to solve a
class of coupled systems of Emden-Fowler equations defined by equation (1.1).
We consider four test problems to indicate the efficiency and applicability of
the proposed algorithm. In order to justify the benefit and advantage of our
presented method, the computed outcomes are compared with those reported
via the Bernoulli wavelets collocation method (BWCM) and Haar wavelets col-
location method (HWCM). The elapsed numerical time (in seconds) for the
suggested technique is provided. To these author’s best knowledge, for the
first time in the literature, we design the proposed computational technique for
approximating the solutions of the considered problem. The spectral matrix
collocation strategies based on various (orthogonal) bases have been success-
fully applied and tested to a wide variety of important model problems by the
researchers in [1, 2, 11,12,13,23].

This content of this research paper is planned as follows. In the next Sec-
tion 2, we present some properties and perform the convergent and error anal-
ysis of the shifted AFFK. Section 3 is devoted to the construction of our pro-
posed QLM-SAFFK technique for the approximate solution of the underlying
model problem under consideration. Simulation experiments are provided and
demonstrated in Section 4. Finally, the conclusions and a summary of the work
are given in Section 5.

2 The shifted airfoil functions of the first kind:
A convergence study

2.1 The shifted version of airfoil functions

The airfoil functions or polynomials have been utilized as expansion functions
to calculate the pressure on an airfoil in both unsteady and steady subsonic flow
in aerodynamics. Monograph [7] provided a detailed descriptions of properties
and formulae related to these functions. Note that this set of polynomials has
been addressed as the Chebyshev polynomials of the third kind. They also are

a special case of the Jacobi polynomials P
pµ,λq

j with µ ` λ “ 0, see [3, 8].
The airfoil functions of the first kind are defined by

Aspχq “
cosrps ` 1{2qϕs

cosϕ{2
, χ “ cosϕ, (2.1)

for ´1 ď χ ď 1 and s ě 0 as an integer. We obviously see that A0pχq “ 1. It is
not difficult to show that A1pχq “ 2χ ´ 1. A recursion formula will be utilized
to get the remaining airfoil functions for s ě 2. Thus, we have

As`1pχq “ 2χAspχq ´ As´1pχq, s “ 1, 2, . . . . (2.2)

Math. Model. Anal., 29(4):781–800, 2024.



784 M. Izadi, P. Roul

By using (2.2), the next two terms are obtained as

A2pχq “ ´1 ´ 2χ ` 4χ2, A3pχq “ 8χ3 ´ 4χ2 ´ 4χ ` 1.

They also are solutions of the following second-order linear differential equation.
In the Sturm-Liouville representation, we have

d

dχ

”

p1 ´ χ2qωpχq
d

dχ
Apχq

ı

` sps ` 1qωpχqAspχq “ 0, s P N,

where the related weight function is ωpχq :“
b

χ`1
1´χ . This implies that they are

orthogonal with regard to ωpχq on p´1, 1q in the sense that we have [7]

ż `1

´1

AspχqAs1 pχqωpχq dχ “ π δss1 . (2.3)

Here, δss1 presents the well-known Kronecker delta function. The airfoil func-
tions of the first kind (AFFK) can be expressed explicitly as

Aspχq “ 2´s
s

ÿ

k“0

p´1qk
ˆ

2s ` 1

2k

˙

p1´χqkp1`χqs´k, s P N0 :“ NY t0u. (2.4)

Moreover, the zeros of Aspχq of degree s are located on the real interval p´1, 1q.
These are given by [7]

χi “ ´ cos r2π i{p2s ` 1qs , i “ 1, 2, . . . , s. (2.5)

In this study, we are aimed to utilize the AFFK on the unit interval r0, 1s.
To this end, we employ the shifted airfoil functions by using the change of
variable χ “ 2z ´ 1. Next, we define the shifted form of AFFK.

Definition 1. The shifted form of the AFFK on r0, 1s of degree s is shown by
A:

spzq and is defined by

A:
spzq “ Asp2z ´ 1q, z P r0, 1s.

Based on the aforementioned transformation and using (2.4), the following
explicit representation form is obtained

A:
spzq “

s
ÿ

k“0

p´1qk
ˆ

2s ` 1

2k

˙

p1 ´ zqk zs´k, s P N0. (2.6)

A similar orthogonality relation for the shifted AFFK tA:
spzqu8

s“0 is obtained if
one applies the given change of variable to (2.3). An easy calculation indicates

that the corresponding weight function is given by ω:pzq “

b

z
1´z for z P p0, 1q.

Therefore, the orthogonality condition reads

ż 1

0

A:
spzqA:

s1 pzqω:pzq dz “
π

2
δss1 . (2.7)

Our next goal is to determine the zeros locations of the shifted AFFK. By using
the relation (2.5) and Definition 1, the next result is obtained
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Lemma 1. The roots of the shifted airfoil functions A:
spzq are within p0, 1q and

are given by
zi “ p1 ` χiq {2, i “ 1, 2, . . . , s, (2.8)

where χi are given in (2.5). Later, we will utilize these discrete points as the
collocation nodes in our algorithm.

Below, we show the explicit formula of shifted AFFK as a powers of z.

Lemma 2. The shifted AFFK of degree s is expressed for s P N0 as

A:
spzq “

s
ÿ

k“0

cs,k z
k, cs,k :“

s
ÿ

i“s´k

p´1q2i´s`k

ˆ

2s ` 1

2i

˙ˆ

i

s ´ k

˙

. (2.9)

Proof. In view of (2.6), we first employ the following binomial expansion

p1 ´ zqk “

k
ÿ

i“0

p´1qk´i

ˆ

k

i

˙

zk´i.

We put this relation into (2.6) to get the result after some manipulations. [\

2.2 A rigorous error analysis of the shifted AFFK

We now intend to study the convergence analysis of the shifted AFFK in detail.
We note that a given function ℓpzq P L2pr0, 1sq can be represented in terms of
SAFFK. It follows that we have

ℓpzq “

8
ÿ

s“0

µs A:
spzq, z P r0, 1s. (2.10)

To get the unknown coefficients µs, one uses the orthogonality relation (2.7).
Thus, we conclude that

µs :“
2

π

ż 1

0

A:
spzq ℓpzqω:pzq dz, s “ 1, 2, . . . . (2.11)

Below, our fundamental goal is to assert that the infinite series form (2.10) is
convergent by using the Weierstrass M test. In this respect, we now derive an
estimation for the coefficients µs in (2.10).

Theorem 1. Suppose that ℓ P Cp2qpr0, 1sqXL2
ω:

pr0, 1sq is represented as (2.10).

Then, the coefficients µs in (2.11) are bounded for s ą 1 as follows

|µs| ă C1 s
´4, C1 “

4

π
}ℓ}8,2, }ℓ}8,2 :“ max

zPr0,1s
|ℓ2pzq|. (2.12)

Proof. We use the change of variable z “ 1
2 p1 ` cosϕq “: tpϕq in (2.11) to

render

µs “
2

π

ż π

0

ℓ ptpϕqq cosrps`
1

2
qϕs cos

ϕ

2
dϕ“

ż π

0

ℓ ptpϕqq

π

!

cosrsϕs` cosrps`1qϕs

)

dϕ.

(2.13)

Math. Model. Anal., 29(4):781–800, 2024.



786 M. Izadi, P. Roul

We now apply two times integration by parts on (2.13) to obtain

µs “
1

8π

ż π

0

ℓ2 ptpϕqq ∆spϕq sinpϕq dϕ,

where

∆spϕq:“
1

s

ˆ

sinpps´1qϕq

s ´ 1
´
sinpps`1qϕq

s ` 1

˙

`
1

s`1

ˆ

sinpsϕq

s
´
sinpps`2qϕq

s ` 2

˙

.

We know that | sinpϕq| ď 1 is valid. Owing to the upper bound of the second-
order derivative, one arrives at

|µs| ď
}ℓ}8,2

8π

∣∣∣∣ż π

0

∆spϕq dϕ

∣∣∣∣ . (2.14)

We now attempt to compute the integral term in (2.14) exactly. By employing
the new variables n “ rϕ, for r “ s ˘ 1, s, s ` 2 to obtain

ż π

0

∆spϕq dϕ “
1 ´ p´1qs´1

ps ´ 1q2 s
`

p´1qs`1 ´ 1

sps ` 1q2
`

1 ´ p´1qs

s2ps ` 1q
`

p´1qs`2 ´ 1

ps ` 1qps ` 2q2
.

One can readily observe that if s ą 1 and depending on whether s is odd or
even, two terms become zero. Therefore, for s ą 1 we have

ż π

0

∆spϕq dϕ “

#

2
ps´1q2 s ´ 2

sps`1q2
“ 8

ps´1q2ps`1q2
, if s even,

2
s2 ps`1q

´ 2
ps`1qps`2q2

“ 8
s2ps`2q2

, if s odd.

In either cases, we have the following inequality
∣∣şπ

0
∆spϕq dϕ

∣∣ ď 8
ps´1q2ps`1q2

.

Now, by utilizing the simple inequality s ´ 1 ě s
2 , which is valid for all s ě 2

we have ∣∣∣∣ż π

0

∆spϕq dϕ

∣∣∣∣ ă
32

s4
. (2.15)

By placing (2.15) into (2.14), we have finished the proof of (2.12). [\

In practice, we mainly consider a series with finite terms to approximate ℓpzq

in (2.10). If (2.10) truncated up to its first pS ` 1q terms, we get

ℓpzq « ℓSpzq “

S
ÿ

s“0

µs A:
spzq. (2.16)

Let us define the error between the infinite series defined in (2.10) and its
cutted series solution ℓSpzq in (2.16) as

ESpzq “ ℓpzq ´ ℓSpzq, (2.17)

which is referred to as the global error on r0, 1s. In addition, by }h}2,: we show
the weighted L2,: norm on r0, 1s with regard to ω:pzq. Estimating the global
error ESpzq is our next aim in both L2 and infinity norms. Firstly, in the
weighted L2,:pr0, 1sq norm we have
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Theorem 2. Assume that the hypotheses of Theorem 1 be fulfilled. An estimate
for the upper bound of ESpzq in the L2,:pr0, 1sq norm satisfies

}ES}2,: ă C3
1

?
S7

, C3 :“

c

π

14
C1 “

c

8

7π
}ℓ}8,2.

Proof. According to relations (2.10) and (2.16) we have

}ES}
2
2,: “

∥∥∥∥∥ 8
ÿ

s“0

µs A:
spzq ´

S
ÿ

s“0

µs A:
spzq

∥∥∥∥∥
2

2,:

“

∥∥∥∥∥ 8
ÿ

s“S`1

µs A:
spzq

∥∥∥∥∥
2

2,:

.

The orthogonality condition (2.7) follows that }ES}
2
2,: “ π

2

ř8

s“S`1 µ
2
s. The

next job is to utilize the obtained upper bound (2.12) derived in Theorem 2 to
the former equality. This implies that

}ES}
2
2,: ď

π

2
C2

1

8
ÿ

s“S`1

1

s8
. (2.18)

By utilizing the Integral Test from calculus we consequently get [27]

8
ÿ

s“S`1

1

s8
ď

ż 8

S

dw

w8
“

1

7S7
.

In order to deduce the claimed estimate, the former inequality will be placed
into (2.18). By doing the square-root operation, the proof is accomplished. [\

The next result is given to pave the way for the derivation of an upper
bound for (2.17) in the L8 norm.

Lemma 3. For all s ě 0, the shifted AFFK satisfying

|A:
spzq| ď 1 ` 2s, @z P r0, 1s. (2.19)

Proof. We first recall that airfoil functions of the first kind (2.1) satisfy [7]

Aspχq “ Uspχq ´ Us´1pχq, χ P r´1, 1s.

Here, by Uspχq we denote the Chebyshev functions of second kind. The follow-
ing relation is valid for this class of classical polynomials [16]

|Uspχq| ď s ` 1, @ |χ| ď 1.

Based upon the change of variable χ “ 2z´1 followed by employing the triangle
inequality, we render

|A:
spzq| ď |Usp2z ´ 1q| ` |Us´1p2z ´ 1q| ď s ` 1 ` s “ 2s ` 1, @z P r0, 1s.

Now, the proof is completed. [\

Math. Model. Anal., 29(4):781–800, 2024.
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Theorem 3. Let assume that the hypotheses of Theorem 1 be satisfied. Then,
an estimate for the upper bound of error ESpzq “

ř8

s“S`1 µs A:
spzq in the

L8pr0, 1sq given by

}ES}8 ă C4
1

S2
, C4 :“

3

2
C1 “

6

π
}ℓ}8,2.

Proof. We continue by utilizing the inequality (2.19) given in Lemma (3) to
arrive at

|ESpzq| ď

8
ÿ

s“S`1

|µs| |A:
spzq| ď

8
ÿ

s“S`1

p2s ` 1q|µs| ď

8
ÿ

s“S`1

3s|µs|.

Owing to the inequality (2.12) in Theorem 2 we have |ESpzq| ă 3C1

ř8

s“S`1
1
s3 .

In the foregoing inequality, we use the Integral Test [27] to obtain

8
ÿ

s“S`1

1

s3
ď

ż 8

S

dw

w3
“

1

2S2
.

By taking the supermom over all values of z P r0, 1s, the desired result is
immediately deduced. [\

3 The QLM-SAFFK matrix technique

3.1 QLM: The main idea

The methodology of QLM enables us to get rid of the intrinsic nonlinearity of
the given model problem. Through various research studies have been proved
that this technique is very effective in several areas of investigations and ap-
plications, see cf. [4, 10, 31]. As a starting point for discussion, the nonlinear
coupled system (1.1) is reformulated as

:ZZZpzq “ EEEpz,ZZZpzq, 9ZZZpzqq, (3.1)

where

ZZZpzq“

„

xpzq

ypzq

ȷ

, 9ZZZpzq“

„

x1pzq

y1pzq

ȷ

,EEEpz,ZZZpzq, 9ZZZpzqq“

„

hpzq´fpx, yq´αx1pzq{z
kpzq´gpx, yq´β y1pzq{z

ȷ

.

If ZZZ0pzq be a rough first approximation to ZZZpzq, the QLM for (3.1) can be
expressed for n “ 0, 1, . . . as

:ZZZn`1pzq «EEEpz,ZZZnpzq, 9ZZZnpzqq `EEEZpz,ZZZnpzq, 9ZZZnpzqq

´

ZZZn`1pzq ´ZZZnpzq

¯

`EEE 9ZZZpz,ZZZnpzq, 9ZZZnpzqq

´

9ZZZn`1pzq ´ 9ZZZnpzq

¯

.

Note, EEEZ “ d
dZZZEEE and EEE 9ZZZ “ d

d 9ZZZ
EEE are the corresponding Jacobian matrices.

The same initial conditions as (1.2) are also supplemented with the former
equations. We now apply the aforesaid QLM to the rewritten model (3.1).
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After doing some simple calculations and manipulations, one gets the following
set of linear system of equations

:ZZZn`1pzq`mmm1,npzq 9ZZZn`1pzq`mmm0,npzqZZZn`1pzq “ rrrnpzq, n “ 0, 1, . . . , (3.2)

where ZZZn`1pzq “

„

xn`1pzq

yn`1pzq

ȷ

, mmm1,npzq “

„

α
z 0

0 β
z

ȷ

,

mmm0,npzq “

„

fxpxnpzq, ynpzqq fypxnpzq, ynpzqq

gxpxnpzq, ynpzqq gypxnpzq, ynpzqq

ȷ

,

rrrnpzq“

„

hpzq´fpxnpzq, ynpzqq`xnpzqfxpxnpzq, ynpzqq`ynpzqfypxnpzq, ynpzqq

kpzq´gpxnpzq, ynpzqq`xnpzqgxpxnpzq, ynpzqq`ynpzqgypxnpzq, ynpzqq

ȷ

.

By virtue of (1.2), the initial conditions are given as

ZZZn`1p0q “

„

xn`1p0q

yn`1p0q

ȷ

“

„

x0

y0

ȷ

, 9ZZZn`1p0q “

„

x1
n`1p0q

y1
n`1p0q

ȷ

“

„

x1

y1

ȷ

. (3.3)

Below, we devise a matrix collocation approach based on the SAFFK to solve
the aforementioned systems (3.2)–(3.3).

3.2 The QLM-SAFFK method

We will approximate the solution of linearized model (3.2) in the form of the
truncated series solutions (2.16) consisting of (S ` 1)-terms. Let assume that

the approximate solutions X pnq

S pzq and Ypnq

S pzq to xnpzq and ynpzq are already
obtained in the iteration number n for n “ 0, 1, . . .. Note that for n “ 0, we
will use the given function ZZZ0pzq as the initial (rough) guess. The next step
is to consider the forms of approximations in the subsequent iteration n ` 1.
Thus, the approximate solutions are presumed as

xn`1pzq«X pn`1q

S pzq“

S
ÿ

s“0

µ
pnq

s,1 A:
spzq, yn`1pzq«Ypn`1q

S pzq“

S
ÿ

s“0

µ
pnq

s,2 A:
spzq,

(3.4)
for z P r0, 1s. Thus, our goal will reduce to find the unknown coefficients

tµ
pnq

s,j uSs“0 for n “ 1, 2, . . . and j “ 1, 2 by developing a spectral collocation
strategy relying on SAFFK. To continue, we mention the following result. A
proof of which is a simple task.

Lemma 4. The truncated expansion solutions in (3.4) for j “ 1, 2 can be ex-
pressed as

S
ÿ

s“0

µ
pnq

s,j A:
spzq “ AAASpzqFFF

pnq

S,j , (3.5)

where FFF
pnq

S,j “

”

µ
pnq

0,j µ
pnq

1,j . . . µ
pnq

S,j

ıT

represents the unknown vectors and

AAASpzq “

”

A:
0pzq A:

1pzq . . . A:

Spzq

ı

is the vector of SAFFK.

We may further decompose the vector AAASpzq as shown in the next Lemma

Math. Model. Anal., 29(4):781–800, 2024.
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Lemma 5. The vector of SAFFK can be decomposed as

AAASpzq “ TTTSpzqCCCS , (3.6)

where TTTSpzq “
“

1 z z2 . . . zS
‰

and CCCS “ pcs,kq
S
s,k“0 denotes a matrix

with upper-triangular structure and its elements are cs,k given in (2.9). Note
that cs,k “ 0 for s ą k. It can be easily seen that the matrix CCCS is non-singular.

Proof. The proof is easily concluded on account of relation (2.9). To do so,
we perform left-hand multiplication of the matrix CCCS by TTTS . [\

We now combine the outcomes of two forgoing Lemmas (i.e., relations (3.5)
and (3.6)) to get

#

X pn`1q

S pzq “ AAASpzqFFF
pnq

S,1 “ TTTSpzqCCCS FFF
pnq

S,1,

Ypn`1q

S pzq “ AAASpzqFFF
pnq

S,2 “ TTTSpzqCCCS FFF
pnq

S,2,
z P r0, 1s. (3.7)

By a straightforward calculation we can show that

d

dz
TTTSpzq “ TTTSpzqDDDS . (3.8)

Here, the matrixDDDS “ pdi,jq
S
i,j is a zero matrix except for entries di,i`1 “ i`1

for i “ 0, 1, . . . , S ´ 1. From this matrix the first-order derivatives of truncated
series forms in (3.7) are represented as

#

d
dzX

pn`1q

S pzq “ TTTSpzqDDDSCCCS FFF
pnq

S,1,
d
dzY

pn`1q

S pzq “ TTTSpzqDDDSCCCS FFF
pnq

S,2,
z P r0, 1s. (3.9)

Similarly, we can approximate the second-order derivatives of approximate so-
lutions by combining the relation (3.8) and (3.9) to gain

#

d2

dz2X pn`1q

S pzq “ TTTSpzqDDD2
SCCCS FFF

pnq

S,1,
d2

dz2Ypn`1q

S pzq “ TTTSpzqDDD2
SCCCS FFF

pnq

S,2,
z P r0, 1s. (3.10)

Let us back to the matrix differential equation (3.2). The vector ZZZn`1pzq and

its derivatives dl

dzlZZZn`1pzq can be approximated by ZZZ
pn`1q

S pzq and dl

dzlZZZ
pn`1q

S pzq

respectively for l “ 1, 2 as

ZZZ
pn`1q

S pzq :“

«

X pn`1q

S pzq

Ypn`1q

Q pzq

ff

,
dl

dzl
ZZZ

pn`1q

S pzq :“

«

dl

dzlX pn`1q

S pzq
dl

dzlYpn`1q

S pzq

ff

. (3.11)

Lemma 6. In the matrix formats, the approximated solutions dl

dzlZZZ
pn`1q

S pzq,
l “ 0, 1, 2 in (3.11) can be written as

ZZZ
pn`1q

S pzq “ sTTT pzq sCCC sFFF
n
,

dl

dzl
ZZZ

pn`1q

S pzq “ sTTT pzq sDDDl
sCCC sFFF

n
, l “ 1, 2, (3.12)

where we have sFFF
n

“

”

FFF
pnq

S,1 FFF
pnq

S,2

ıT

and

sTTT pzq “

„

TTTSpzq 000
000 TTTSpzq

ȷ

, sCCC “

„

CCCS 000
000 CCCS

ȷ

, sDDDl “

„

pDDDSql 000
000 pDDDSql

ȷ

.
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Proof. The desired results can be simply obtainable by just putting rela-
tions (3.7), (3.9) and (3.10) into the related vector form in (3.11). [\

We now employ the zeros of SAFFK given in (2.8) as the collocation nodes.

To this end, the zeros of A:

S`1pzq on r0, 1s are labeled as z0, z1, . . . , zS . Now,
we insert these zeros into the linear matrix differential equation (3.2) to get

:ZZZn`1pzjq `mmm1,npzjq 9ZZZn`1pzjq `mmm0,npzjqZZZn`1pzjq “ rrrnpzjq, j “ 0, 1, . . . , S,
(3.13)

for n “ 0, 1, . . .. Next task is to define the vectors and matrices as

:WWWn “

»

—

—

—

–

:ZZZn`1pz0q

:ZZZn`1pz1q

...
:ZZZn`1pzSq

fi

ffi

ffi

ffi

fl

, 9WWWn “

»

—

—

—

–

9ZZZn`1pz0q

9ZZZn`1pz1q

...
9ZZZn`1pzSq

fi

ffi

ffi

ffi

fl

, WWWn “

»

—

—

—

–

ZZZn`1pz0q

ZZZn`1pz1q

...
ZZZn`1pzSq

fi

ffi

ffi

ffi

fl

,

RRRn “

»

—

—

—

–

rrrnpz0q

rrrnpz1q

...
rrrnpzSq

fi

ffi

ffi

ffi

fl

, MMM i,n “

»

—

—

—

–

mmmi,npz0q 000 . . . 000
000 mmmi,npz1q . . . 000
...

...
. . .

...
000 000 . . . mmmi,npzSq

fi

ffi

ffi

ffi

fl

, i “ 0, 1.

Therefore, the vector representation of relations (3.13) can be written in a
compact format as

:WWWn `MMM1,n
9WWWn `MMM0,nWWWn “ RRRn, n “ 0, 1, . . . . (3.14)

The next Lemma provides the matrix forms of WWWn, 9WWWn, and :WWWn. It is suffices
to substitute the SAFFK nodes into relations (3.12).

Lemma 7. The matrix forms of relations (3.12) at the collocation points (2.8)
are given by

WWWn “
s

sTTT sCCC sFFF
n
, 9WWWn “

s

sTTT sDDD1
sCCC sFFF

n
, :WWWn “

s

sTTT sDDD2
sCCC sFFF

n
. (3.15)

Here, the matrix s

sTTT is defined by s

sTTT “ rsTTT pz0qsTTT pz1q . . . sTTT pzSqsT . Moreover, the
matrices sTTT , sCCC, sDDDl, l “ 1, 2 the vector sFFF

n
are already defined in (3.12).

Now, by inserting the former relations (3.15) into (3.14) we arrive at the
fundamental matrix equation (FME). It follows that

AAAn
sFFF
n

“ RRRn, or rAAAn;RRRns , n “ 0, 1, . . . , (3.16)

where AAAn :“
!

s

sTTT sDDD2 `MMM1,n
s

sTTT sDDD1 `MMM0,n
s

sTTT
)

sCCC.

One should note that the foregoing FME (3.16) is a (linear) algebraic system

comprises 2pS ` 1q unknowns µ
pnq

s,j for s “ 0, 1, . . . , S and j “ 1, 2 to be deter-
mined as the SAFFK coefficients. However, this system is not yet completed
due to missing of initial conditions (1.2).

Math. Model. Anal., 29(4):781–800, 2024.
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We are aimed to enter the given initial conditions (3.3) into the FME (3.16).
To begin, let us pay attention to the matrix forms (3.12) for the approximation

ZZZ
pn`1q

S pzq. In this respect, we let z Ñ 0 to arrive at

xAAA0
sFFF
n

“ pRRR0, xAAA0 :“ sTTT p0q sCCC, pRRR0 “

„

x0

y0

ȷ

or
”

xAAA0; pRRR0

ı

.

For the second initial condition in (3.3), we consider again (3.12) for l “ 1
followed by tending z Ñ 0 to obtain the following matrix representation

xAAA1
sFFF
n

“ pRRR1, xAAA1 :“ sTTT p0q sDDD1
sCCC, pRRR1 “

„

x1

y1

ȷ

or
”

xAAA1; pRRR1

ı

.

Here, the constants x0, y0, and x1, y1 are known in (1.2). The replacement of
four rows of the matrix rAAAn;RRRns in (3.16) will be performed next by the row

matrices
”

xAAA0; pRRR0

ı

and
”

xAAA1; pRRR1

ı

. Let us denote the modified FME by

xAAAn
sFFF
n

“ xRRRn or
”

xAAAn; xRRRn

ı

. (3.17)

Thus, after solving the modified FME (3.17), the unknown SAFFK coefficients
will be gotten. Any linear solver or algorithm can be taken into consideration to
get the solution of this system. Once the vector sFFF

n
is determined, all unknowns

µ
pnq

s,j , for j “ 1, 2, and s “ 0, 1, . . . , S as the coefficients in the expansion
series (3.4) are determined in the iteration n. Therefore, an approximation for
the solution of model (1.1) will be at hand.

4 Computational results

To carry out experimental computations, our platform of choice is Matlab
software version 2021a on a personal laptop with the following capabilities: 16
GB RAM, 1 TB memory, and CPU Intel Core-i7-10870H.

Let n “ 5 is taken as the quasilinearization parameter in the experimental
results. During the running of QLM-SAFFK algorithm, we set ZZZ0pzq as the
zero functions or we take it as the initial conditions (1.2). The errors are also
defined as follows

Epnq

x,Spzq :“ |xpzq ´ X pnq

S pzq|, Epnq

y,Spzq :“ |ypzq ´ Ypnq

S pzq|, z P r0, 1s, (4.1)

in the iteration n “ 1, 2, . . .. We also calculate the norms in the L8 norm for
a fixed value of n in accordance to the relations

Lx
8 ” Lx

8pSq :“ max
zPr0,1s

Epnq

x,Spzq, Ly
8 ” Ly

8pSq :“ max
zPr0,1s

Epnq

y,Spzq.

In what follows, we further compute the numerical order of convergence (NOC)
as

NOCx
8 :“ log2

ˆ

Lx
8pSq

Lx
8p2Sq

˙

, NOCy
8 :“ log2

ˆ

Ly
8pSq

Ly
8p2Sq

˙

. (4.2)
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Problem 1. Let us set α “ 1 and β “ 2 in the first test example. Here, the
following coupled system will be studied [5, 6, 29]

#

x2pzq ` 1
zx

1pzq ` x2pzq ypzq ´ p4z2 ` 5qxpzq “ 0,

y2pzq ` 2
z y

1pzq ` xpzq y2pzq ´ p4z2 ´ 5qypzq “ 0,

#

xp0q “ yp0q “ 1,

x1p0q “ y1p0q “ 0.

One can easily verify that the exact solutions are pxpzq, ypzqq “ pez
2

, e´z2

q.

We first take S “ 8 in the computations. The outputs of our QLM-SAFFK
technique are the following approximations

X p5q

8 pzq “0.4262447 z8 ´ 1.455108 z7`2.651745 z6´2.398299 z5`1.887582 z4

´ 0.46969036 z3 ` 1.0807017 z2 ´ 8.5159197 ˆ 10´108 z ` 1.0,

Yp5q

8 pzq “ ´ 0.02678217 z8 ` 0.177758 z7 ´ 0.3979087 z6 ` 0.180474 z5

` 0.4130984 z4`0.02458554 z3´1.0035135 z2`7.98 ˆ 10´110 z`1.0.

The former approximate solutions together with related exact solutions are
visualized in Figure 1. As one can see that the approximate solutions obtained
via QLM-SAFFK are in good alignment with the associated exact solutions.
Precisely, we show the graphical plots of the achieved absolute errors defined
in (4.1). These errors using S “ 8 are seen in Figure 2. Note that beside S “ 8,
the plots of absolute errors with S “ 16 and S “ 24 are further visualized in
Figure 2. It can be readily inferred that by increasing the number of bases we
get the desired level of accuracy in our proposed approach.
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Figure 1. Graphics of approximate solutions for xpzq (a) and ypzq (b) using
QLM-SAFFK technique in Problem 1 with S “ 8, n “ 5.
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Figure 2. Comparing of absolute errors using QLM-SAFFK procedure for Problem 1
with S “ 8, 16, 24 and n “ 5.
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A thorough comparison of numerical outcomes with the corresponding analyt-
ical true solutions is shown in Table 1. Here, we utilize S “ 15. Obviously,
eight to ten-digit agreement is found between our presented results and the
exact true ones.

Table 1. Numerical results and absolute errors for xpzq, ypzq obtained via QLM-SAFFK
procedure using S “ 15, n “ 5 in Problem 1.

z X p1q

15 pzq Ep1q

x,15pzq Exact Yp1q

15 pzq Ep1q

y,15pzq Exact

0.2 1.040810773 1.68´9 1.04081077419239 0.9607894392 3.99´11 0.96078943915232

0.4 1.173510869 2.37´9 1.17351087099181 0.8521437890 6.79´11 0.85214378896621

0.6 1.433329411 3.07´9 1.43332941456034 0.6976763262 1.10´10 0.69767632607103

0.8 1.896480875 4.06´9 1.89648087930495 0.5272924242 1.57´10 0.52729242404305

1.0 2.718281823 5.69´9 2.71828182845904 0.3678794414 1.99´10 0.36787944117144

Problem 2. We investigate the following nonlinear singular system [5,6, 28]

#

x2pzq ` 1
zx

1pzq ` y3pzq
`

x2pzq ` 1
˘

“ 0,

y2pzq ` 3
z y

1pzq ` y5pzq
`

x2pzq ` 3
˘

“ 0,

#

xp0q “ yp0q “ 1,

x1p0q “ y1p0q “ 0.

The exact solutions are given by pxpzq, ypzqq “ p
?
1 ` z2, 1{

?
1 ` z2q.

Let us first set S “ 8 for this example. We visualize the approximate solutions

X p5q

8 pzq and Yp5q

8 pzq using the QLN-SAFFK collocation approach as shown in
Figure 3. Moreover, the graphical representations of the achieved absolute
errors are visualized in Figure 3. Indeed, these approximations are obtained as
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Figure 3. Graphics of approximate solutions for xpzq (a) and ypzq (b) using
QLM-SAFFK technique in Problem 2 with S “ 8, n “ 5.

follows

X p5q

8 pzq “ 0.0052868077 z8 ´ 0.022458304 z7 ` 0.01615031 z6 ` 0.077130627 z5

´ 0.17803247 z4 ` 0.019410543 z3 ` 0.49675486 z2 ` 1.70 ˆ 10´108 z ` 1.0,

Yp5q

8 pzq “ ´0.008682165 z8 ´ 0.005352826 z7 ` 0.20901949 z6 ´ 0.63166476 z5

` 0.74189028 z4 ´ 0.11393863 z3 ´ 0.48414691 z2 ` 8.30 ˆ 10´110 z ` 1.0.
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We now check the related NOC via relations (4.2) for this example. Theoreti-
cally in Theorem 3 we showed that this order of convergence is 2 with respect
to number of bases S. However, as reported in Table 2, the corresponding NOC
are shown to behaved exponentially as we increase S. In this table, we used
S “ 2k, k “ 0, 1, 2, 4, 5. The results of L8 related to both approximated solu-
tions are also presented in Table 2. Furthermore, we record the execution time
of our algorithm to solve the modified augmented linear system (3.17). Thus,
the required CPU times given in seconds are shown in the last column. Note
that this time is needed to obtain both approximate solutions simultaneously.

Table 2. The outcomes of errors in L8 norms, the associated NOC, and the elapsed CPU
times for Problem 2 with diverse S.

S Lx
8 NOCx

8 Ly
8 NOCy

8 CPU(s)

1 4.1421 ˆ 10´01 ´ 2.9289 ˆ 10´01 ´ 0.70016

2 4.5104 ˆ 10´02 3.1990 8.7107 ˆ 10´02 1.7495 0.92313

4 8.5101 ˆ 10´03 2.4060 5.0466 ˆ 10´03 4.1094 1.35134

8 4.6489 ˆ 10´05 7.5161 1.5047 ˆ 10´04 5.0678 2.81615

16 1.0898 ˆ 10´09 15.381 3.6853 ˆ 10´09 15.317 7.22782

32 1.8502 ˆ 10´15 19.168 4.3897 ˆ 10´16 23.001 19.9206

Some comparisons are performed between the results of our algorithm and
the outcomes of the Bernoulli wavelets collocation method (BWCM) with
M “ 10 as well as with those obtained via Haar wavelets collocation method
(HWCM) with J “ 4. Both methods are developed in [14]. The results are
reported in Table 3. Although it seems that the results of BWCM are more
accurate, but in overall our method performed better than BWCM. The reason
is that the maximum absolute errors in the BWCM is 3.83ˆ 10´2 (at z “ 0.8)
while in the QLM-SAFFK is 3.37547 ˆ 10´9 for the first solution xpzq.

Table 3. Numerical results and absolute errors for xpzq, ypzq obtained via QLM-SAFFK
procedure using S “ 15, n “ 5 in Problem 2.

z X p1q

15 pzq Ep1q

x,15pzq BWCM HWCM Yp1q

15 pzq Ep1q

y,15pzq BWCM HWCM

0.1 1.004987564 1.68´9 5.60´9 1.19´6 0.995037187 3.65´09 3.04´9 2.43´6

0.2 1.019803906 2.37´9 5.79´9 3.67´6 0.980580672 3.64´09 3.49´9 3.63´5

0.3 1.044030654 3.07´9 3.61´9 7.28´6 0.957826282 3.30´09 3.57´9 6.50´7

0.4 1.077032965 4.06´9 4.31´9 1.16´5 0.928476688 2.85´09 3.53´9 2.96´6

0.5 1.118033992 1.68´9 2.39´9 1.18´5 0.894427189 2.37´09 3.31´9 3.98´6

0.6 1.166190382 2.37´9 3.12´9 2.09´5 0.857492924 1.90´09 3.01´9 3.78´7

0.7 1.220655565 3.07´9 1.42´9 2.69´5 0.819231919 1.46´09 2.69´9 5.56´6

0.8 1.280624851 4.06´9 3.83´2 3.38´2 0.780868808 1.08´09 2.48´9 1.48´5

0.9 1.345362408 4.06´9 3.44´9 3.21´5 0.743294145 7.65´10 1.78´9 1.24´5

1.0 1.414213565 5.69´9 2.34´9 3.27´5 0.707106781 5.04´10 1.68´9 2.35´5

Math. Model. Anal., 29(4):781–800, 2024.
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Problem 3. The following nonlinear singular coupled system is considered [5,
26,28,29]

#

x2pzq ` 5
zx

1pzq ` 8
`

expzq ` 2e´ 1
2 ypzq

˘

“ 0,

y2pzq ` 3
z y

1pzq ´ 8
`

e´ypzq ` 2e
1
2 xpzq

˘

“ 0,

#

xp0q “ yp0q “ 0,

x1p0q “ y1p0q “ 0.

The exact solutions are given by pxpzq, ypzqq “ p´2 lnpz2 ` 1q, 2 lnpz2 ` 1qq.

For this test problem we again consider S “ 8 and run our QLM-SAFFK
algorithm with n “ 5 number of iterations. The approximated solutions are

X p5q

8 pzq “ ´0.053337755 z8 ` 0.19417638 z7 ´ 0.028109583 z6 ´ 0.88580349 z5

` 1.5259934 z4´0.16063339 z3´1.9785469 z2`4.7 ˆ 10´108 z´3.4 ˆ 10´108,

Yp5q

8 pzq “ 0.045612319 z8 ´ 0.15278663 z7 ´ 0.065219781 z6 ` 1.0000873 z5

´ 1.6072752 z4`0.19330416 z3`1.9724346 z2´3.3 ˆ 10´108 z´1.1 ˆ 10´108.

We plot these approximate solutions in Figure 4 along with the related exact
true solutions, which are shown by thick lines. We now show that the order
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Figure 4. Graphics of approximate solutions for xpzq (a) and ypzq (b) using
QLM-SAFFK technique in Problem 3 with S “ 8, n “ 5.

of convergence of the proposed scheme behaves exponentially. The results
of L8 norms and the estimated NOC are presented in Table 4. Finally, we
present the numerical outcomes evaluated at some discrete points zj “ 2j{10
for j “ 1, 2, 3, 4, 5. Using S “ 15 and n “ 5, the outcomes are shown in Table 5.

Problem 4. In the last test problem, let us consider the following nonlinear
singular coupled system [5,26,29]

#

x2pzq ` 8
zx

1pzq ` xpzq
`

18 ´ 4 ln ypzq
˘

“ 0,

y2pzq ` 4
z y

1pzq ´ ypzq
`

10 ´ 4 lnxpzq
˘

“ 0,

#

xp0q “ yp0q “ 1,

x1p0q “ y1p0q “ 0.

One shows that the exact solutions are given by pxpzq, ypzqq “ pe´z2

, ez
2

q.
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Table 4. The outcomes of error norms in L8, the associated NOC, and the elapsed CPU
times for Problem 3 with diverse S.

S Lx
8 NOCx

8 Ly
8 NOCy

8 CPU(s)

1 1.3863 ˆ 10`00 ´ 1.3863 ˆ 10`00 ´ 0.61321

2 3.0165 ˆ 10´01 2.2003 3.7499 ˆ 10´01 1.8863 0.78018

4 1.8966 ˆ 10´02 3.9914 2.3172 ˆ 10´02 4.0164 1.14082

8 1.8021 ˆ 10´04 6.7176 2.8375 ˆ 10´04 6.3516 2.07383

16 3.0304 ˆ 10´09 15.860 5.1466 ˆ 10´09 15.751 4.85578

32 7.8714 ˆ 10´17 25.198 2.7973 ˆ 10´16 24.133 16.1101

Table 5. The outcomes of absolute errors for xpzq, ypzq using QLM-SAFFK procedure with
S “ 15, n “ 5 for Problem 3.

z X p1q

15 pzq Ep1q

x,15pzq Exact Yp1q

15 pzq Ep1q

y,15pzq Exact

0.2 ´0.078441432 5.81´9 ´0.078441426306563 0.078441436 9.55´9 0.078441426306563

0.4 ´0.296840015 4.75´9 ´0.296840010236547 0.296840019 8.43´9 0.296840010236547

0.6 ´0.614969403 3.40´9 ´0.614969399495921 0.614969406 6.82´9 0.614969399495921

0.8 ´0.989392486 2.11´9 ´0.989392483672214 0.989392489 5.25´9 0.989392483672214

1.0 ´1.386294362 1.03´9 ´1.386294361119891 1.386294365 3.94´9 1.386294361119891

By using S “ 8, we get the following approximations for this example as

X p5q

8 pzq “ ´0.025077205 z8 ` 0.16860662 z7 ´ 0.37732895 z6 ` 0.15564878 z5

` 0.4301283 z4 ` 0.017987073 z3 ´ 1.0020509 z2 ` 1.0106002 ˆ 10´106 z ` 1.0,

Yp5q

8 pzq “ 0.39381724 z8 ´ 1.2787462 z7 ` 2.2428373 z6 ´ 1.876918 z5

` 1.4924375 z4 ´ 0.29473112 z3 ` 1.0406634 z2 ´ 3.4063679 ˆ 10´108 z ` 1.0.

These solutions can be compared with the expansion series of the exact ana-
lytical solutions given by e˘z2

“ 1 ˘ z2 ` 1
2 z

4 ˘ 1
6 z

6 ` 1
24 z

8 ` . . . .
Figure 5 shows the achieved absolute errors related to above approximate

solutions using S “ 8, 16, 24. By utilizing S “ 15, the numerical results to-
gether with absolute errors computed at some points z P r0, 1s are presented in
Table 6.
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Figure 5. Comparing of absolute errors using QLM-SAFFK procedure for Problem 4
with S “ 8, 16, 24 and n “ 5.
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Table 6. Numerical results and absolute errors for xpzq, ypzq obtained via QLM-SAFFK
procedure using S “ 15, n “ 5 in Problem 4.

z X p1q

15 pzq Ep1q

x,15pzq Exact Yp1q

15 pzq Ep1q

y,15pzq Exact

0.2 0.96078943916 5.00´12 0.960789439152323 1.040810774 3.03´10 1.040810774192388

0.4 0.85214378896 2.44´12 0.852143788966211 1.173510871 3.44´10 1.173510870991810

0.6 0.69767632606 1.20´11 0.697676326071031 1.433329414 4.19´10 1.433329414560340

0.8 0.52729242402 2.07´11 0.527292424043049 1.896480879 5.51´10 1.896480879304951

1.0 0.36787944115 2.64´11 0.367879441171442 2.718281828 7.80´10 2.718281828459045

5 Conclusions

We have designed an accurate and effective spectral matrix collocation algo-
rithm using the (novel) shifted airfoil function of the first kind (SAFFK) to
determine the approximate (polynomial) solutions to a class of nonlinear cou-
pled system of Emden-Fowler equations. The error estimation and convergence
analysis for the SAFFK have been investigated. Four numerical test examples
were provided to demonstrate the effectiveness and accuracy of the presented
numerical matrix scheme. The computed computational results reveal that the
presented QLM-SAFFK algorithm well approximates the solution of nonlinear
system of coupled Emden-Fowler equations. By comparing with the Bernoulli
and Haar wavelets collocation methods, computational outcomes demonstrate
the high efficiency and competitiveness of our method. Moreover, the recorded
computational time justified that our presented numerical matrix collocation
algorithm is numerically efficient. To conclude, our method is robust, efficient
(in terms of numerical accuracy) and easy to implement for solving the class of
nonlinear system of coupled Emden-Fowler equations. Further, the method is
capable of treating the singularity at the zero. The proposed technique may be
easily extended to solve other similar classes of coupled systems of nonlinear
singular differential equations given by either initial or boundary conditions.
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