
Mathematical Modelling and Analysis

Volume 29, Issue 2, 331–346, 2024

https://doi.org/10.3846/mma.2024.19502

A Discrete Version of the Mishou Theorem
Related to Periodic Zeta-Functions
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Sciences
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suppose that uN → ∞ and uN ≪ N2 as N → ∞, and the set {(h1 log p : p ∈
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1 Introduction

Let s = σ + it be a complex variable, and 0 < α ⩽ 1 a fixed parameter. The
Riemann zeta-function ζ(s) and Hurwitz zeta-function ζ(s, α) are defined, for
σ > 1, by the Dirichlet series

ζ(s) =

∞∑
m=1

1

ms
and ζ(s, α) =

∞∑
m=0

1

(m+ α)s
,

■
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and have analytic continuations to the whole complex plane, except for a simple
pole at the point s = 1 with residue 1. These functions play an important role
in pure mathematics, and have various applications in other natural sciences.
One of common feature of the functions ζ(s) and ζ(s, α) (for some classes of
parameter α) is their universality. Let D = {s ∈ C : 1/2 < σ < 1}, K be the
class of compact subsets of the strip D with connected complements, H(K),
K ∈ K, class of continuous functions on K and analytic in the interior of K,
and H0(K) the subclass of H(K) of non-vanishing on K functions. Then,
it is known [1, 18, 20, 29, 39] that there are infinitely many shifts ζ(s + iτ),
τ ∈ R, approximating every function f(s) ∈ H0(K). Similarly, the set of
shifts ζ(s + iτ, α) with rational or transcendental α approximating a given
function f(s) ∈ H(K) also is infinite [1,27]. Discrete shifts ζ(s+ikh) and ζ(s+
ikh, α) with fixed h > 0 and k ∈ N have an analogical approximation property
[1,15,16,19,33,37]. The case of algebraic irrational α is more complicated, was
discussed in [2], and the best results were obtained in [38].

H. Mishou in [35] obtained a joint universality theorem for ζ(s) and ζ(s, α)
with transcendental α. Denote by measA the Lebesgue measure of a measurable
set A ⊂ R. Then, the Mishou theorem is the following statement.

Theorem 1. Suppose that the parameter α is transcendental, K1,K2 ∈ K and
f1(s) ∈ H0(K1), f2(s) ∈ H(K2). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K1

|ζ(s+ iτ)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ iτ, α)− f2(s)| < ε

}
> 0.

The problem of algebraic parameter α was discussed in [17].
A discrete analogue of Theorem 1 was proved in [6]. Denote by #A the

cardinality of a set A ⊂ R, and define the set

L(P, α, h, π) = {(log p : p ∈ P), (log(m+ α) : m ∈ N0), 2π/h} ,

where P and N0 are the sets of all prime and non-negative integers, respectively.
Then the main result of [6] is

Theorem 2. Suppose that the set L(P, α, h, π) is linearly independent over the
field of rational numbers Q. Let K1,K2 ∈ K and f1(s) ∈ H0(K), f2(s) ∈
H(K). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ⩽ k ⩽ N : sup

s∈K1

|ζ(s+ ikh)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ ikh, α)− f2(s)| < ε

}
> 0.

Generalizations of Theorem 2, including a weighted version, were given
in [7, 14] and [34].

The periodic and periodic Hurwitz zeta-functions are generalizations of the
Riemann and Hurwitz zeta-functions, respectively. Let a = {am : m ∈ N}
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and b = {bm : m ∈ N0} be two periodic sequences of complex numbers with
minimal periods q1 ∈ N and q2 ∈ N, respectively. The periodic zeta-function
ζ(s; a) and periodic Hurwitz zeta-function ζ(s, α; b), 0 < α ⩽ 1, are defined,
for σ > 1, by the Dirichlet series

ζ(s; a) =

∞∑
m=1

am
ms

and ζ(s, α; b) =

∞∑
m=0

bm
(m+ α)s

.

The periodicity of the sequences a and b implies, for σ > 1, the equalities

ζ(s; a) =
1

qs1

q1∑
l=1

alζ

(
s,

l

q1

)
and ζ(s, α; b) =

1

qs2

q2−1∑
l=0

blζ

(
s,

l + α

q2

)
,

which give the meromorphic continuations for the functions ζ(s; a) and ζ, α; b)
to the whole complex plane, and

Res
s=1

ζ(s; a) =
1

q1

q1∑
l=1

al and Res
s=1

ζ(s, α; b) =
1

q2

q2−1∑
l=0

bl.

We recall that the sequence a is multiplicative if a1 = 1 and amn = aman
for all (m,n) = 1. The case of a multiplicative sequence was treated in [31].
Discrete universality for ζ(s; a) can be found in [3,13]. Universality of ζ(s, α; b)
with various types of the parameter α was considered in [8, 11, 28]. A version
of the Mishou theorem for periodic zeta-functions ζ(s; a) and ζ(s, α; b) was
obtained in [12].

Theorem 3. [12]. Suppose that α is transcendental number, and the sequence
a is multiplicative. Let K1, K2 and f1(s), f2(s) be the same as in Theorem 1.
Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K1

|ζ(s+ iτ ; a)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ iτ, α; b)− f2(s)| < ε

}
> 0.

The discrete version of Theorem 3 was presented in [13]. Define the set

L(P;α, h1, h2, π) = {(h1 log p : p ∈ P), (h2 log(m+ α) : m ∈ N0), 2π} ,

where h1 and h2 are positive numbers.

Theorem 4. [13]. Suppose that the sequence a is multiplicative, and the set
L(P;α, h1, h2, π) is linearly independent over Q. Let K1, K2 and f1(s), f2(s)
be the same as in Theorem 1. Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ⩽ k ⩽ N : sup

s∈K1

|ζ(s+ ikh; a)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ ikh, α; b)− f2(s)| < ε

}
> 0.
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The aim of this paper, is an extension of Theorem 4 for certain absolutely
convergent Dirichlet series related to the functions ζ(s; a) and ζ(s, α; b).

Let θ > 1/2 be a fixed number. For u > 0, set

vu(m) = exp
{
− (m/u)

θ
}
, m ∈ N,

vu(m,α) = exp
{
− ((m+ α)/u)

θ
}
, m ∈ N0,

where exp{a} = ea. Define the series

ζu(s; a) =

∞∑
m=1

amvu(m)

ms
and ζu(s, α; b) =

∞∑
m=0

bmvu(m,α)

(m+ α)s
.

Since vu(m) and vu(m,α) are exponentially decreasing with respect to m, and
am and bm are bounded, the latter series are absolutely convergent for σ > σ0

with arbitrary finite σ0.
The first universality results with certain uT → ∞ for ζuT

(s; {1}) were
obtained in [21], and discrete version in [32]. The case in short intervals
was treated in [23]. A generalization of the above results for ζuT

(s; a) with
multiplicative sequence a was presented in [9] and [10]. Similar problems for
ζuT

(s, α; {1}) and ζuT
(s, α; b) were discussed in [26] and [5]. The papers [22]

and [24] are devoted to extension of Mishou’s theorem for absolutely convergent
Dirichlet series. In [25], the case of Dirichlet series connected to zeta-functions
of certain cusp forms was considered. We also mention the work [30] devoted
to the universality of absolutely convergent Dirichlet series with generalized
shifts.

We recall a theorem from [4] which extends the Mishou theorem for ζuT
(s; a)

and ζuT
(s, α; b) with uT → ∞. For its statement, we need some notation and

definitions. Denote γ = {s ∈ C : |s| = 1}, and define the sets

Ω1 =
∏
p∈P

γp and Ω2 =
∏

m∈N0

γm,

where γp = γ for all p ∈ P and γm = γ for all m ∈ N0. The tori Ω1 and
Ω2 with the product topology and operation of pointwise multiplication are
compact topological Abelian groups. Hence, Ω = Ω1 × Ω2 also is a compact
topological group, therefore, on (Ω,B(Ω)) (B(X) is the Borel σ-field of the space
X), the probability Haar measure mH exists, and we have the probability space
(Ω,B(Ω),mH). Denote by ω = (ω1, ω2), ω1 = (ω1(p) : p ∈ P), ω2 = (ω2(m) :
m ∈ N0), the elements of Ω, and extend the elements ω1(p) to the set N by the
formula

ω1(m) =
∏
pl|m

pl+1∤m

ωl
1(p), m ∈ N.

LetH(D) stand for the space of analytic onD functions endowed with topology
of uniform convergence on compacta. On the probability space (Ω,B(Ω),mH),
define the H2(D)-valued random element

ζ(s, α, ω1, ω2; a, b) = (ζ(s, ω1; a), ζ(s, α, ω2; b)) ,
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where

ζ(s, ω1; a) =

∞∑
m=1

amω1(m)

ms
and ζ(s, α, ω2; b) =

∞∑
m=0

bmω2(m)

(m+ α)s
.

The main result of [4] is the following theorem.

Theorem 5. [4]. Suppose that the sequence a is multiplicative, α is tran-
scendental, and uT → ∞ and uT ≪ T 2 as T → ∞. Let K1,K2 ∈ K and
f1(s) ∈ H0(K1), f2(s) ∈ H(K2). Then the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K1

|ζuT
(s+ iτ ; a)− f1(s)| < ε1,

sup
s∈K2

|ζuT
(s+ iτ, α; b)− f2(s)| < ε2

}
= mH

{
(ω1, ω2) ∈ Ω : sup

s∈K1

|ζ(s, ω1; a)− f1(s)| < ε1,

sup
s∈K2

|ζ(s, α, ω2; b)− f2(s)| < ε2

}
exists and is positive for all but at most countably many ε1 > 0 and ε2 > 0.

Here, and in what follows, the notation x ≪θ y, y > 0, means that there exists
a constant c = c(θ) > 0 such that |x| ⩽ cy.

We extend Theorem 5 to the discrete case by using the set L(P;α, h1, h2, π).

Theorem 6. Suppose that the sequence a is multiplicative, the set L(P;α,
h1, h2, π) is linearly independent over Q, and uN → ∞ and uN ≪ N2 as
N → ∞. Let K1,K2 ∈ K and f1(s) ∈ H0(K1), f2(s) ∈ H(K2). Then, the
limit

lim
N→∞

1

N + 1
#

{
0 ⩽ k ⩽ N : sup

s∈K1

|ζuN
(s+ ikh1; a)− f1(s)| < ε1,

sup
s∈K2

|ζuN
(s+ ikh2, α; b)− f2(s)| < ε2

}
= mH

{
(ω1, ω2) ∈ Ω : sup

s∈K1

|ζ(s, ω1; a)− f1(s)| < ε1,

sup
s∈K2

|ζ(s, α, ω2; b)− f2(s)| < ε2

}
exists and is positive for all but at most countably many ε1 > 0 and ε2 > 0.

We observe that the set L(P;α, h1, h2, π) is non-empty. We recall that the
numbers η1, . . . , ηr are algebraically independent over Q if it does not exist any
polynomial p(s, . . . , sr) ̸= 0 with rational coefficients such that p(η1, . . . , ηr) =
0. The Nesterenko theorem asserts [36] that the numbers π and eπ are alge-
braically independent over Q. From the latter theorem, it follows that the set

Math. Model. Anal., 29(2):331–346, 2024.
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L(P; 1/π, h1, h2, π) with rational positive h1 and h2 is linearly independent over
Q. The Nesterenko theorem implies the transcendence of the numbers π and
eπ. Suppose, on the contrary, that the set L(P; 1/π, h1, h2, π) is not linearly

independent over Q. Then there exist integers k1, . . . , kr1 , k̂1, . . . , k̂r2 and k̃,
not all zeros, such that

k1h1 log p1 + . . .+ kr1h1 log pr1 + k̂1h2 log (m1 + 1/π) + . . .

+ k̂r2h2 log (mr2 + 1/π) + k̃π = 0.

Hence,

pl11 . . . p
lr1
r1 (m1 + 1/π)

l̂1 . . . (mr2 + 1/π)
l̂r2 el̃π = 1

with some integers l1, . . . , lr1 , l̂1, . . . , l̂r2 and l̃, and this contradicts the algebraic
independence of the numbers π and eπ. Similarly, the equalities

k1h1 log p1 + . . .+ kr1h1 log pr1 + k̂1h2 log (m1 + 1/π) + . . .

+ k̂r2h2 log (mr2 + 1/π) = 0,

k1h1 log p1 + . . .+ kr1h1 log pr1 + k̃π = 0

contradict the transcendence of the numbers π and eπ, respectively. Moreover,
it is well known that the set {log p : p ∈ P} is linearly independent over Q,
therefore, the equality

k1h1 log p1 + . . .+ kr1h1 log pr1 = 0

gives again a contradiction.
A proof of Theorem 6 is probabilistic, it is based on a limit theorem in

the space H2(D) for periodic zeta-functions obtained in [13]. Moreover, the
application of a limit theorem requires a certain estimate in the mean for the
metric in H2(D).

2 The main equality

We start with recalling the metric in H2(D). For g1, g2 ∈ H(D), let

ρ(g1, g2) =

∞∑
l=1

2−l sups∈Kl
|g1(s)− g2(s)|

1 + sups∈Kl
|g1(s)− g2(s)|

,

where {Kl : l ∈ N} ⊂ D is a sequence of compact embedded set such that D is
the union of the sets Kl, and each compact set of D lies in some Kl. Then, ρ
is a metric which induces the topology of uniform convergence on compacta in
the space H(D). For g

l
= (gl1, gl2), l = 1, 2, let

ρ2(g1, g2) = max (ρ(g11, g12), ρ(g21, g22)) .

Then, ρ2 is a metric in H2(D) inducing the product topology.
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In this section, we consider the mean value of the distance between ζ(s +
ikh, α; a, b) and ζ

uN
(s+ ikh, α; a, b), where

ζ(s+ ikh, α; a, b) = (ζ(s+ ikh1; a), ζ(s+ ikh, α; b)) ,

ζ
uN

(s+ ikh, α; a, b) = (ζuN
(s+ ikh1; a), ζuN

(s+ ikh, α; b))

and h = (h1, h2). For this, we apply the following lemmas.

Lemma 1. Suppose that uN → ∞ and uN ≪ N2 as N → ∞. Then, for every
h1 > 0,

lim
N→∞

1

N + 1

N∑
k=0

ρ (ζ(s+ ikh1; a), ζuN
(s+ ikh; a)) = 0.

The lemma is Lemma 1 from [10].

Lemma 2. For every fixed σ > 1/2, h2 > 0 and t ∈ R, the estimate

N∑
k=0

|ζ(σ + ikh2 + it, α; b)|2 ≪σ,α,b N(1 + |t|)

is valid.

A proof of lemma is given in [13].

Lemma 3. Under hypotheses of Lemma 1,

lim
N→∞

1

N + 1

N∑
k=0

ρ (ζ(s+ ikh2, α; b), ζuN
(s+ ikh2, α; b)) = 0.

Proof. In virtue of the definition of the metric ρ, it is sufficient to show that
the equality

lim
N→∞

1

N + 1

N∑
k=0

sup
s∈K

|ζ(s+ ikh2, α; a)− ζuN
(s+ ikh2, α; b)| = 0

is true for every compact set K ⊂ D. Using the Mellin formula

1

2πi

∫ a+i∞

a−i∞
Γ (z)b−z dz = e−b, (2.1)

where Γ (z) denotes the Euler gamma-function, and a, b > 0, leads, for σ > 1/2,
to the integral representation

ζuN
(s, α; b) =

1

2πi

∫ θ+i∞

θ−i∞
ζ(s+ z, α; b)luN

(z) dz, (2.2)

where θ comes from the definition of vuN
(m,α), and

luN
(z) =

1

θ
Γ
(z
θ

)
uz
N .

Math. Model. Anal., 29(2):331–346, 2024.
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Actually, in view of (2.1),

1

2πi

∫ θ+i∞

θ−i∞

1

(m+ α)z
1

θ
Γ
(z
θ

)
uz
N dz =

1

2πi

∫ θ+i∞

θ−i∞
Γ
(z
θ

)(m+ α

uN

)(−z/θ)θ

dz

= exp
{
− ((m+ α)/uN )

θ
}
.

Therefore, since θ + σ > 1 for σ > 1/2, we have

ζuN
(s, α; b) =

1

2πi

∫ θ+i∞

θ−i∞

∞∑
m=0

bmvuN
(m,α)

(m+ α)s+z
luN

(z) dz

=
1

2πi

∫ θ+i∞

θ−i∞
ζ(s+ z, α; b)luN

(z) dz.

Fix a compact set K ⊂ D. Then, there exists a number 0 < δ < 1
6 such that

1/2+2δ ⩽ σ ⩽ 1− δ for s = σ+ it ∈ K. Let θ = 1/2+ δ and θ1 = 1/2+ δ−σ.
Then, −1/2 + 2δ ⩽ θ1 ⩽ −δ. Therefore, the integrand of (2.2), in the strip
θ1 ⩽ σ ⩽ θ, has a simple pole at z = 0 and a possible simple pole at z = 1− s.
Hence, by the residue theorem, we find, for s ∈ K,

ζuN
(s, α; b)− ζ(s, α; b) =

1

2πi

∫ θ1+i∞

θ1−i∞
ζ(s+ z, α; b)luN

(z) dz +RN (s, α; b),

where

RN (s, α; b) =

{
0 if r

def
= Res

s=1
ζ(s, α; b) = 0,

rluN
(1− s) otherwise.

The latter equality, for s = σ + it ∈ K, gives

ζuN
(s+ ikh2, α; b)− ζ(s+ ikh2, α; b)

=
1

2π

∫ ∞

−∞
ζ

(
1

2
+ δ + it+ ikh2 + iτ, α; b

)
luN

(
1

2
+ δ − σ + iτ

)
dτ

+RN (s+ ikh2, α; b)

≪
∫ ∞

−∞

∣∣∣∣ζ (1

2
+ δ + ikh2 + iτ, α; b

)∣∣∣∣ sup
s∈K

∣∣∣∣luN

(
1

2
+ δ − s+ iτ

)∣∣∣∣ dτ
+ sup

s∈K
|RN (s+ ikh2, α; b)|.

Therefore,

1

N + 1

N∑
k=0

sup
s∈K

|ζ(s+ ikh2, α; b)− ζuN
(s+ ikh2, α; b)|

≪
∫ ∞

−∞

(
1

N + 1

N∑
k=0

|ζ (1/2 + δ + ikh2 + iτ, α; b) |

)
× sup

s∈K
|luN

(1/2 + δ − s+ iτ) |dτ

+
1

N + 1

N∑
k=0

sup
s∈K

|RN (s+ ikh2, α; b)|
def
= IN + SN . (2.3)
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For estimating of the integral IN , we apply Lemma 2. The Cauchy-Schwarz
inequality and Lemma 2 yield

1

N + 1

N∑
k=0

|ζ (1/2 + δ + ikh2 + iτ, α; b) |

≪

(
1

N + 1

N∑
k=0

|ζ (1/2 + δ + ikh2 + iτ, α; b) |2
)1/2

≪ (1 + |τ |)1/2. (2.4)

By the definition of luN
(s), using the classical bound for the gamma-function

Γ (σ + it) ≪ exp{−c(1 + |t|)}, c > 0, (2.5)

which is uniform in σ lying in every fixed interval [σ1, σ2], we find that, for
s ∈ K,

luN
(1/2 + δ − s+ iτ) ≪δ u

1/2+δ−σ
N exp

{
− c

θ
(1 + |τ − t|)

}
≪δ,K u−δ

N exp{−c1|τ |}, c1 > 0,

because of boundedness of t. This and (2.4) show that

IN ≪δ,h2,α,b,K u−δ
N

∫ ∞

−∞
(1 + |τ |)1/2 exp{−c1|τ |}dτ ≪δ,h2,α,b,K u−δ

N . (2.6)

By the definitions of RN (s, α; b) and luN
(s), and (2.5), for s ∈ K, we have

RN (s+ ikh2, α; b) ≪δ,α,b u1−σ
N exp{−c2(1 + kh2|t|)}

≪δ,α,b,K u
1/2−2δ
N exp{−c3(1 + kh2)}, c2, c3 > 0.

Therefore,

SN ≪δ,K u
1/2−2δ
N

1

N

N∑
k=0

exp{−c3(1 + kh2)} ≪δ,α,b,K u
1/2−2δ
N

×
(
logN

N
+

1

N

∑
k⩾logN

exp{−c3kh2}
)

≪δ,α,b,K,h2 u
1/2−2δ
N

logN

N
.

Thus, in view of (2.6),

IN + SN ≪δ,h2,α,b,K u−δ
N + u

1/2−2δ
N

logN

N
.

Since uN → ∞ and uN ≪ N2, this shows that

lim
N→∞

(IN + SN ) = 0,

and, by (2.3), the lemma is proved. ⊓⊔

Now, we state the main result on the closeness of ζ(s, α; a, b), ζ
uN

(s, α; a, b).

Math. Model. Anal., 29(2):331–346, 2024.
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Lemma 4. Suppose that uN → ∞ and uN ≪ N2 as N → ∞. Then, for every
positive h1 and h2,

lim
N→∞

1

N + 1

N∑
k=0

ρ2

(
ζ(s+ ikh, α; a, b), ζ

uN
(s+ ikh, α; a, b)

)
= 0.

Proof. By the definition of the metric ρ2, it suffices to prove that

lim
N→∞

1

N + 1

N∑
k=0

ρ (ζ(s+ ikh1; a), ζuN
(s+ ikh1; a)) = 0

and

lim
N→∞

1

N + 1

N∑
k=0

ρ (ζ(s+ ikh2, α; b), ζuN
(s+ ikh2, α; b)) = 0.

Therefore, the lemma is consequence of Lemmas 1 and 3. ⊓⊔

3 Limit theorems

Recall that H(D) is the space of analytic on D functions. The proof of Theo-
rem 6 relies on a discrete limit theorem for ζ

uN
(s, α; a, b) in the space H2(D) on

weakly convergent probability measures. For brevity, let Pζ be the distribution

of the random element ζ(s, α, ω1, ω2; a, b), i.e.,

Pζ(A) = mH

{
(ω1, ω2) ∈ Ω : ζ(s, α, ω1, ω2; a, b) ∈ A

}
, A ∈ B(H2(D)).

For A ∈ B(H2(D)), define

PN (A) =
1

N + 1
#
{
0 ⩽ k ⩽ N : ζ(s+ ikh, α; a, b) ∈ A

}
.

Lemma 5. [13]. Suppose that the set L(P;α, h1, h2, π) is linearly independent
over Q. Then, PN converges weakly to Pζ as N → ∞.

Lemmas 4 and 5 lead to a limit theorem for ζuN
(s, α; a, b). Let, for A ∈

B(H2(D)),

PN,uN
(A) =

1

N + 1
#
{
0 ⩽ k ⩽ N : ζ

uN
(s+ ikh, α; a, b) ∈ A

}
.

Theorem 7. Suppose that the set L(P;α, h1, h2, π) is linearly independent over
Q, and uN → ∞ and uN ≪ N2 as N → ∞. Then, PN,uN

converges weakly to
Pζ as N → ∞.

Proof. Let ξN be a random variable defined on a certain probability space
(Ω̂,B(Ω̂), µ) and having the distribution µ{ξN=k}=1/(N+1), k=0, 1, . . . , N .
We will use the equivalent of weak convergence of probability measures in
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terms of closed sets, namely, if P and Pn, n ∈ N, are probability measures on
(X,B(X)), then Pn, as n → ∞, converges weakly to P if and only if

lim sup
n→∞

Pn(F ) ⩽ P (F )

for every closed set F ⊂ X. Fix a closed set F ⊂ H2(D), ε > 0, and define the
set

Fε =

{
g ∈ H2(D) : inf

ĝ∈F

{
ρ2
(
g, ĝ
)
⩽ ε
}}

.

Then, the set Fε is closed as well. Define two H2(D)-valued random elements

XN = XN (s) = ζ(s+ iξNh, α; a, b), Y N = Y N (s) = ζ
uN

(s+ iξNh, α; a, b).

By the definition of the random variable ξN , the random elements XN and Y N

have the distributions PN and PN,uN
, respectively. Moreover,

{Y N ∈ Fε} ⊂ {XN ∈ F} ∪ {ρ2(XN , Y N ) ⩾ ε}.

Hence,

µ(Fε) ⩽ µ(F ) + µ{ρ2(XN , Y N ) ⩾ ε},
PN,uN

(Fε) ⩽ PN (F ) + µ{ρ2(XN , Y N ) ⩾ ε}. (3.1)

By Lemma 5 and equivalent of weak convergence in terms of closed sets,

lim sup
N→∞

PN (F ) ⩽ Pζ(F ). (3.2)

Moreover, Lemma 4 implies that

lim sup
N→∞

µ{ρ2(XN , Y N ) ⩾ ε} = lim sup
N→∞

1

N + 1
#
{
0 ⩽ k ⩽ N :

ρ2

(
ζ(s+ ikh, α; a, b), ζ

uN
(s+ ikh, α; a, b)

)
⩾ ε
}

⩽ lim sup
N→∞

1

ε(N + 1)

N∑
k=0

ρ2

(
ζ(s+ ikh, α; a, b), ζ

uN
(s+ ikh, α; a, b)

)
= 0.

Thus, in view of (3.1) and (3.2),

lim sup
N→∞

PN,uN
(Fε) ⩽ Pζ(F ).

Letting ε → +0, we obtain lim supN→∞ PN,uN
(F ) ⩽ Pζ(F ), and this together

with equivalent of weak convergence in terms of closed sets proves the theorem.
⊓⊔

Theorem 7 implies the weak convergence for the corresponding probability
measures in the space R2. For A ∈ B(R2), define

QN,uN
(A) =

1

N + 1
#

{
0 ⩽ k ⩽ N :

(
sup
s∈K1

|ζuN
(s+ ikh1; a)− f1(s)|,

sup
s∈K2

|ζuN
(s+ ikh2, α; b)− f2(s)|

)
∈ A

}
.
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Corollary 1. Suppose that the set L(P;α, h1, h2, π) is linearly independent over
Q, and uN → ∞ and uN ≪ N2 as N → ∞. Let K1, K2 and f1(s), f2(s) be as
in Theorem 6. Then QN,uN

converges weakly to the measure

mH

{
(ω1, ω2) ∈ Ω :

(
sup
s∈K1

|ζ(s, ω1; a)− f1(s)|,

sup
s∈K2

|ζ(s, α, ω2; b)− f2(s)|
)

∈ A

}
, A ∈ B(R2), (3.3)

as N → ∞.

Proof. Consider the mapping u : H2(D) → R2 defined by

u(g1, g2) =

(
sup
s∈K1

|g1(s)− f1(s)|, sup
s∈K2

|g2(s)− f2(s)|
)
, g1, g2 ∈ H(D).

Then, the mapping u is continuous. Actually, suppose that (gN1, gN2) →
(g1, g2) as N → ∞ in the space H2(D). Since the convergence in H(D) is
uniform on compact sets, we have

lim
N→∞

sup
s∈Kj

|gNj(s)− gj(s)| = 0, j = 1, 2.

Therefore, using the triangle inequality, we obtain that(
sup
s∈Kj

|gNj(s)− fj(s)| − sup
s∈Kj

|gj(s)− fj(s)|

)
⩽ sup

s∈Kj

|gNj − gj(s)| −−−−→
N→∞

0,

for j = 1, 2. This proves that

lim
N→∞

u(gN1, gN2) = u(g1, g2),

i.e., u is continuous.
By the definitions of u, PN,uN

and QN,uN
, for A ∈ B(R2), we have

QN,uN
(A) =

1

N + 1
#
{
0 ⩽ k ⩽ N : ζ

uN
(s+ ikh, α; a, b) ∈ u−1A

}
= PN,uN

(u−1A) = PN,uN
u−1(A),

i.e., QN,uN
= PN,uN

u−1. Therefore, the continuity of u, Theorem 7 and the
preservation of weak convergence under continuous mappings, show that QN,uN

converges weakly to Pζu
−1, i.e., to the measure (3.3) as N → ∞. ⊓⊔

4 Proof of Theorem 6

Theorem 6 follows from Corollary 1, weak convergence in R2, support of the
measure Pζ , and the Mergelyan theorem on approximation of analytic functions
by polynomials. We recall that the support of the measure Pζ is a minimal

closed set Sζ such that Pζ(Sζ) = 1. The set Sζ consists of all g ∈ H2(D), for

every open neighbourhood G of which the inequality Pζ(G) > 0 is true.

Define S(a) = {g ∈ H(D) : either g(s) ̸= 0, or g(s) ≡ 0} and S(b) = H(D).
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Lemma 6. [13]. Suppose that the sequence a is multiplicative, and the set
L(P;α, h1, h2, π) is linearly independent over Q. Then the support of the mea-
sure Pζ is the set S(a)× S(b).

The next lemma is a version of the Mergelyan theorem on approximation
of analytic functions by polynomials.

Lemma 7. Suppose that K ⊂ C is a compact set with connected complement,
and g(s) is a continuous function on K and analytic in the interior of K.
Then, for every ε > 0, there exists a polynomial pε(s) such that

sup
s∈K

|g(s)− pε(s)| < ε.

Proof. (Proof of Theorem 6). It is well known that the weak convergence
of probability measures is equivalent to that of the corresponding distribution
functions. Recall that the distribution function Dn(x1, x2), as n → ∞, con-
verges weakly to the distribution function D(x1, x2) if

lim
n→∞

Dn(x1, x2) = D(x1, x2)

for (x1, x2) ∈ R2 such that x1 and x2 are continuity points of the functions
D(x1,+∞) and D(+∞, x2), respectively.

Define the distribution functions

FN (ε1, ε2) =
1

N + 1
#

{
0 ⩽ k ⩽ N : sup

s∈K1

|ζuN
(s+ ikh1; a)− f1(s)| < ε1,

sup
s∈K2

|ζuN
(s+ ikh2, α; b)− f2(s)| < ε2

}
F (ε1, ε2) =mH

{
(ω1, ω2) ∈ Ω : sup

s∈K1

|ζ(s, ω1; a)− f1(s)| < ε1,

sup
s∈K2

|ζ(s, α, ω2; b)− f2(s)| < ε2

}
.

Then, by Corollary 1, we have that FN (ε1, ε2) converges weakly to F (ε1, ε2) as
N → ∞. Thus,

lim
N→∞

FN (ε1, ε2) = F (ε1, ε2), (4.1)

where ε1 and ε2 are continuity points of the distribution functions F (ε1,+∞)
and F (+∞, ε2), respectively. Since the distribution functions F (ε1,+∞) and
F (+∞, ε2) have at most countable sets of discontinuity points, the equality
(4.1) is true for all but at most countably many ε1 > 0 and ε2 > 0.

It remains to show that F (ε1, ε2) > 0. For this, we will apply Lemma 7.

By Lemma 7, there exist polynomials p1(s) and p2(s) such that

sup
s∈K1

|f1(s)− ep1(s)| < ε1
2
, sup

s∈K2

|f2(s)− p2(s)| <
ε2
2
. (4.2)
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Define the set

Gε1,ε2 =

{
(g1, g2) ∈ H2(D) : sup

s∈K1

|g1(s)− ep1(s)| < ε1
2
,

sup
s∈K2

|f2(s)− p2(s)| <
ε2
2

}
.

The point (ep1(s), p2(s)), in view of Lemma 6, is an element of the support of
the measure Pζ . Therefore,

Pζ(Gε1,ε2) > 0. (4.3)

Define one more set

Gε1,ε2 =

{
(g1, g2) ∈ H2(D) : sup

s∈K1

|g1(s)− f1(s)| < ε1,

sup
s∈K2

|g2(s)− f2(s)| < ε2

}
.

In view of equalities (4.2), we have the inclusion Gε1,ε2 ⊂ Gε1,ε2 . Therefore, by
(4.3),

Pζ(Gε1,ε2) ⩾ Pζ(Gε1,ε2) > 0.

This and the definitions of Pζ and Gε1,ε2 gives the positivity of F (ε1, ε2). The
theorem is proved. ⊓⊔
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[25] A. Laurinčikas. On the universality of the zeta functions of cer-
tain cusp forms. Sbornik: Mathematics, 213(5):659–670, 2022.
https://doi.org/10.1070/SM9650.
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