A Discrete Version of the Mishou Theorem Related to Periodic Zeta-Functions

Aidas Balčiūnas ${ }^{a}$, Mindaugas Jasas a and Audronė Rimkevičienè ${ }^{b}$
${ }^{a}$ Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University
Naugarduko g. 24, LT-03225 Vilnius, Lithuania
${ }^{b}$ Faculty of Business and Technologies, Šiauliai State University of Applied Sciences
Aušros al. 40, LT-76241 Šiauliai, Lithuania
E-mail(corresp.): a.rimkeviciene@svako.lt
E-mail: aidas.balciunas@mif.vu.lt
E-mail: mindaugas.jasas@mif.stud.vu.lt

Received July 11, 2023; accepted March 8, 2024

Abstract

In the paper, we consider simultaneous approximation of a pair of analytic functions by discrete shifts $\zeta_{u_{N}}\left(s+i k h_{1} ; \mathfrak{a}\right)$ and $\zeta_{u_{N}}\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right)$ of the absolutely convergent Dirichlet series connected to the periodic zeta-function with multiplicative sequence \mathfrak{a}, and the periodic Hurwitz zeta-function, respectively. We suppose that $u_{N} \rightarrow \infty$ and $u_{N} \ll N^{2}$ as $N \rightarrow \infty$, and the set $\left\{\left(h_{1} \log p: p \in\right.\right.$ $\left.\mathbb{P}),\left(h_{2} \log (m+\alpha): m \in \mathbb{N}_{0}\right), 2 \pi\right\}$ is linearly independent over \mathbb{Q}.

Keywords: Mishou theorem, periodic zeta-function, periodic Hurwitz zeta-function, universality.

AMS Subject Classification: 11M41.

1 Introduction

Let $s=\sigma+i t$ be a complex variable, and $0<\alpha \leqslant 1$ a fixed parameter. The Riemann zeta-function $\zeta(s)$ and Hurwitz zeta-function $\zeta(s, \alpha)$ are defined, for $\sigma>1$, by the Dirichlet series

$$
\zeta(s)=\sum_{m=1}^{\infty} \frac{1}{m^{s}} \quad \text { and } \quad \zeta(s, \alpha)=\sum_{m=0}^{\infty} \frac{1}{(m+\alpha)^{s}},
$$

[^0]and have analytic continuations to the whole complex plane, except for a simple pole at the point $s=1$ with residue 1 . These functions play an important role in pure mathematics, and have various applications in other natural sciences. One of common feature of the functions $\zeta(s)$ and $\zeta(s, \alpha)$ (for some classes of parameter α) is their universality. Let $D=\{s \in \mathbb{C}: 1 / 2<\sigma<1\}, \mathcal{K}$ be the class of compact subsets of the strip D with connected complements, $H(K)$, $K \in \mathcal{K}$, class of continuous functions on K and analytic in the interior of K, and $H_{0}(K)$ the subclass of $H(K)$ of non-vanishing on K functions. Then, it is known $[1,18,20,29,39]$ that there are infinitely many shifts $\zeta(s+i \tau)$, $\tau \in \mathbb{R}$, approximating every function $f(s) \in H_{0}(K)$. Similarly, the set of shifts $\zeta(s+i \tau, \alpha)$ with rational or transcendental α approximating a given function $f(s) \in H(K)$ also is infinite [1,27]. Discrete shifts $\zeta(s+i k h)$ and $\zeta(s+$ $i k h, \alpha)$ with fixed $h>0$ and $k \in \mathbb{N}$ have an analogical approximation property $[1,15,16,19,33,37]$. The case of algebraic irrational α is more complicated, was discussed in [2], and the best results were obtained in [38].
H. Mishou in [35] obtained a joint universality theorem for $\zeta(s)$ and $\zeta(s, \alpha)$ with transcendental α. Denote by meas A the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Then, the Mishou theorem is the following statement.

Theorem 1. Suppose that the parameter α is transcendental, $K_{1}, K_{2} \in \mathcal{K}$ and $f_{1}(s) \in H_{0}\left(K_{1}\right), f_{2}(s) \in H\left(K_{2}\right)$. Then, for every $\varepsilon>0$,

$$
\begin{aligned}
\liminf _{T \rightarrow \infty} \frac{1}{T} \text { meas }\{\tau \in[0, T]: & \sup _{s \in K_{1}}\left|\zeta(s+i \tau)-f_{1}(s)\right|<\varepsilon \\
& \left.\sup _{s \in K_{2}}\left|\zeta(s+i \tau, \alpha)-f_{2}(s)\right|<\varepsilon\right\}>0
\end{aligned}
$$

The problem of algebraic parameter α was discussed in [17].
A discrete analogue of Theorem 1 was proved in [6]. Denote by $\# A$ the cardinality of a set $A \subset \mathbb{R}$, and define the set

$$
L(\mathbb{P}, \alpha, h, \pi)=\left\{(\log p: p \in \mathbb{P}),\left(\log (m+\alpha): m \in \mathbb{N}_{0}\right), 2 \pi / h\right\}
$$

where \mathbb{P} and \mathbb{N}_{0} are the sets of all prime and non-negative integers, respectively. Then the main result of [6] is

Theorem 2. Suppose that the set $L(\mathbb{P}, \alpha, h, \pi)$ is linearly independent over the field of rational numbers \mathbb{Q}. Let $K_{1}, K_{2} \in \mathcal{K}$ and $f_{1}(s) \in H_{0}(K), f_{2}(s) \in$ $H(K)$. Then, for every $\varepsilon>0$,

$$
\begin{aligned}
& \liminf _{N \rightarrow \infty} \frac{1}{N+1} \#\{0 \leqslant k \leqslant N: \\
& \sup _{s \in K_{1}}\left|\zeta(s+i k h)-f_{1}(s)\right|<\varepsilon \\
&\left.\sup _{s \in K_{2}}\left|\zeta(s+i k h, \alpha)-f_{2}(s)\right|<\varepsilon\right\}>0
\end{aligned}
$$

Generalizations of Theorem 2, including a weighted version, were given in $[7,14]$ and [34].

The periodic and periodic Hurwitz zeta-functions are generalizations of the Riemann and Hurwitz zeta-functions, respectively. Let $\mathfrak{a}=\left\{a_{m}: m \in \mathbb{N}\right\}$
and $\mathfrak{b}=\left\{b_{m}: m \in \mathbb{N}_{0}\right\}$ be two periodic sequences of complex numbers with minimal periods $q_{1} \in \mathbb{N}$ and $q_{2} \in \mathbb{N}$, respectively. The periodic zeta-function $\zeta(s ; \mathfrak{a})$ and periodic Hurwitz zeta-function $\zeta(s, \alpha ; \mathfrak{b}), 0<\alpha \leqslant 1$, are defined, for $\sigma>1$, by the Dirichlet series

$$
\zeta(s ; \mathfrak{a})=\sum_{m=1}^{\infty} \frac{a_{m}}{m^{s}} \quad \text { and } \quad \zeta(s, \alpha ; \mathfrak{b})=\sum_{m=0}^{\infty} \frac{b_{m}}{(m+\alpha)^{s}} .
$$

The periodicity of the sequences \mathfrak{a} and \mathfrak{b} implies, for $\sigma>1$, the equalities

$$
\zeta(s ; \mathfrak{a})=\frac{1}{q_{1}^{s}} \sum_{l=1}^{q_{1}} a_{l} \zeta\left(s, \frac{l}{q_{1}}\right) \quad \text { and } \quad \zeta(s, \alpha ; \mathfrak{b})=\frac{1}{q_{2}^{s}} \sum_{l=0}^{q_{2}-1} b_{l} \zeta\left(s, \frac{l+\alpha}{q_{2}}\right)
$$

which give the meromorphic continuations for the functions $\zeta(s ; \mathfrak{a})$ and $\zeta, \alpha ; \mathfrak{b})$ to the whole complex plane, and

$$
\operatorname{Res}_{s=1} \zeta(s ; \mathfrak{a})=\frac{1}{q_{1}} \sum_{l=1}^{q_{1}} a_{l} \quad \text { and } \quad \operatorname{Res}_{s=1} \zeta(s, \alpha ; \mathfrak{b})=\frac{1}{q_{2}} \sum_{l=0}^{q_{2}-1} b_{l} .
$$

We recall that the sequence \mathfrak{a} is multiplicative if $a_{1}=1$ and $a_{m n}=a_{m} a_{n}$ for all $(m, n)=1$. The case of a multiplicative sequence was treated in [31]. Discrete universality for $\zeta(s ; \mathfrak{a})$ can be found in $[3,13]$. Universality of $\zeta(s, \alpha ; \mathfrak{b})$ with various types of the parameter α was considered in [8,11,28]. A version of the Mishou theorem for periodic zeta-functions $\zeta(s ; \mathfrak{a})$ and $\zeta(s, \alpha ; \mathfrak{b})$ was obtained in [12].

Theorem 3. [12]. Suppose that α is transcendental number, and the sequence \mathfrak{a} is multiplicative. Let K_{1}, K_{2} and $f_{1}(s), f_{2}(s)$ be the same as in Theorem 1. Then, for every $\varepsilon>0$,

$$
\begin{aligned}
\liminf _{T \rightarrow \infty} \frac{1}{T} \text { meas }\{\tau \in[0, T]: & \sup _{s \in K_{1}}\left|\zeta(s+i \tau ; \mathfrak{a})-f_{1}(s)\right|<\varepsilon \\
& \left.\sup _{s \in K_{2}}\left|\zeta(s+i \tau, \alpha ; \mathfrak{b})-f_{2}(s)\right|<\varepsilon\right\}>0
\end{aligned}
$$

The discrete version of Theorem 3 was presented in [13]. Define the set

$$
L\left(\mathbb{P} ; \alpha, h_{1}, h_{2}, \pi\right)=\left\{\left(h_{1} \log p: p \in \mathbb{P}\right),\left(h_{2} \log (m+\alpha): m \in \mathbb{N}_{0}\right), 2 \pi\right\}
$$

where h_{1} and h_{2} are positive numbers.
Theorem 4. [13]. Suppose that the sequence \mathfrak{a} is multiplicative, and the set $L\left(\mathbb{P} ; \alpha, h_{1}, h_{2}, \pi\right)$ is linearly independent over \mathbb{Q}. Let K_{1}, K_{2} and $f_{1}(s), f_{2}(s)$ be the same as in Theorem 1. Then, for every $\varepsilon>0$,

$$
\begin{aligned}
\liminf _{N \rightarrow \infty} \frac{1}{N+1} \#\{0 \leqslant k \leqslant N & \sup _{s \in K_{1}}\left|\zeta(s+i k h ; \mathfrak{a})-f_{1}(s)\right|<\varepsilon \\
& \left.\sup _{s \in K_{2}}\left|\zeta(s+i k h, \alpha ; \mathfrak{b})-f_{2}(s)\right|<\varepsilon\right\}>0
\end{aligned}
$$

The aim of this paper, is an extension of Theorem 4 for certain absolutely convergent Dirichlet series related to the functions $\zeta(s ; \mathfrak{a})$ and $\zeta(s, \alpha ; \mathfrak{b})$.

Let $\theta>1 / 2$ be a fixed number. For $u>0$, set

$$
\begin{aligned}
& v_{u}(m)=\exp \left\{-(m / u)^{\theta}\right\}, \quad m \in \mathbb{N} \\
& v_{u}(m, \alpha)=\exp \left\{-((m+\alpha) / u)^{\theta}\right\}, \quad m \in \mathbb{N}_{0}
\end{aligned}
$$

where $\exp \{a\}=\mathrm{e}^{a}$. Define the series

$$
\zeta_{u}(s ; \mathfrak{a})=\sum_{m=1}^{\infty} \frac{a_{m} v_{u}(m)}{m^{s}} \quad \text { and } \quad \zeta_{u}(s, \alpha ; \mathfrak{b})=\sum_{m=0}^{\infty} \frac{b_{m} v_{u}(m, \alpha)}{(m+\alpha)^{s}}
$$

Since $v_{u}(m)$ and $v_{u}(m, \alpha)$ are exponentially decreasing with respect to m, and a_{m} and b_{m} are bounded, the latter series are absolutely convergent for $\sigma>\sigma_{0}$ with arbitrary finite σ_{0}.

The first universality results with certain $u_{T} \rightarrow \infty$ for $\zeta_{u_{T}}(s ;\{1\})$ were obtained in [21], and discrete version in [32]. The case in short intervals was treated in [23]. A generalization of the above results for $\zeta_{u_{T}}(s ; \mathfrak{a})$ with multiplicative sequence \mathfrak{a} was presented in [9] and [10]. Similar problems for $\zeta_{u_{T}}(s, \alpha ;\{1\})$ and $\zeta_{u_{T}}(s, \alpha ; \mathfrak{b})$ were discussed in [26] and [5]. The papers [22] and [24] are devoted to extension of Mishou's theorem for absolutely convergent Dirichlet series. In [25], the case of Dirichlet series connected to zeta-functions of certain cusp forms was considered. We also mention the work [30] devoted to the universality of absolutely convergent Dirichlet series with generalized shifts.

We recall a theorem from [4] which extends the Mishou theorem for $\zeta_{u_{T}}(s ; \mathfrak{a})$ and $\zeta_{u_{T}}(s, \alpha ; \mathfrak{b})$ with $u_{T} \rightarrow \infty$. For its statement, we need some notation and definitions. Denote $\gamma=\{s \in \mathbb{C}:|s|=1\}$, and define the sets

$$
\Omega_{1}=\prod_{p \in \mathbb{P}} \gamma_{p} \quad \text { and } \quad \Omega_{2}=\prod_{m \in \mathbb{N}_{0}} \gamma_{m}
$$

where $\gamma_{p}=\gamma$ for all $p \in \mathbb{P}$ and $\gamma_{m}=\gamma$ for all $m \in \mathbb{N}_{0}$. The tori Ω_{1} and Ω_{2} with the product topology and operation of pointwise multiplication are compact topological Abelian groups. Hence, $\Omega=\Omega_{1} \times \Omega_{2}$ also is a compact topological group, therefore, on $(\Omega, \mathcal{B}(\Omega))(\mathcal{B}(\mathbb{X})$ is the Borel σ-field of the space $\mathbb{X})$, the probability Haar measure m_{H} exists, and we have the probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$. Denote by $\omega=\left(\omega_{1}, \omega_{2}\right), \omega_{1}=\left(\omega_{1}(p): p \in \mathbb{P}\right), \omega_{2}=\left(\omega_{2}(m)\right.$: $m \in \mathbb{N}_{0}$), the elements of Ω, and extend the elements $\omega_{1}(p)$ to the set \mathbb{N} by the formula

$$
\omega_{1}(m)=\prod_{\substack{p^{l} \mid m \\ p^{l+1} \nmid m}} \omega_{1}^{l}(p), \quad m \in \mathbb{N}
$$

Let $H(D)$ stand for the space of analytic on D functions endowed with topology of uniform convergence on compacta. On the probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$, define the $H^{2}(D)$-valued random element

$$
\underline{\zeta}\left(s, \alpha, \omega_{1}, \omega_{2} ; \mathfrak{a}, \mathfrak{b}\right)=\left(\zeta\left(s, \omega_{1} ; \mathfrak{a}\right), \zeta\left(s, \alpha, \omega_{2} ; \mathfrak{b}\right)\right),
$$

where

$$
\zeta\left(s, \omega_{1} ; \mathfrak{a}\right)=\sum_{m=1}^{\infty} \frac{a_{m} \omega_{1}(m)}{m^{s}} \quad \text { and } \quad \zeta\left(s, \alpha, \omega_{2} ; \mathfrak{b}\right)=\sum_{m=0}^{\infty} \frac{b_{m} \omega_{2}(m)}{(m+\alpha)^{s}} .
$$

The main result of [4] is the following theorem.
Theorem 5. [4]. Suppose that the sequence \mathfrak{a} is multiplicative, α is transcendental, and $u_{T} \rightarrow \infty$ and $u_{T} \ll T^{2}$ as $T \rightarrow \infty$. Let $K_{1}, K_{2} \in \mathcal{K}$ and $f_{1}(s) \in H_{0}\left(K_{1}\right), f_{2}(s) \in H\left(K_{2}\right)$. Then the limit

$$
\begin{array}{r}
\lim _{T \rightarrow \infty} \frac{1}{T} \text { meas }\left\{\tau \in[0, T]: \sup _{s \in K_{1}}\left|\zeta_{u_{T}}(s+i \tau ; \mathfrak{a})-f_{1}(s)\right|<\varepsilon_{1},\right. \\
\left.\sup _{s \in K_{2}}\left|\zeta_{u_{T}}(s+i \tau, \alpha ; \mathfrak{b})-f_{2}(s)\right|<\varepsilon_{2}\right\} \\
=m_{H}\left\{\left(\omega_{1}, \omega_{2}\right) \in \Omega: \sup _{s \in K_{1}}\left|\zeta\left(s, \omega_{1} ; \mathfrak{a}\right)-f_{1}(s)\right|<\varepsilon_{1},\right. \\
\left.\sup _{s \in K_{2}}\left|\zeta\left(s, \alpha, \omega_{2} ; \mathfrak{b}\right)-f_{2}(s)\right|<\varepsilon_{2}\right\}
\end{array}
$$

exists and is positive for all but at most countably many $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$.
Here, and in what follows, the notation $x<_{\theta} y, y>0$, means that there exists a constant $c=c(\theta)>0$ such that $|x| \leqslant c y$.

We extend Theorem 5 to the discrete case by using the set $L\left(\mathbb{P} ; \alpha, h_{1}, h_{2}, \pi\right)$.

Theorem 6. Suppose that the sequence \mathfrak{a} is multiplicative, the set $L(\mathbb{P} ; \alpha$, $\left.h_{1}, h_{2}, \pi\right)$ is linearly independent over \mathbb{Q}, and $u_{N} \rightarrow \infty$ and $u_{N} \ll N^{2}$ as $N \rightarrow \infty$. Let $K_{1}, K_{2} \in \mathcal{K}$ and $f_{1}(s) \in H_{0}\left(K_{1}\right), f_{2}(s) \in H\left(K_{2}\right)$. Then, the limit

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N+1} \#\{0 \leqslant k \leqslant N \sup _{s \in K_{1}}\left|\zeta_{u_{N}}\left(s+i k h_{1} ; \mathfrak{a}\right)-f_{1}(s)\right|<\varepsilon_{1} \\
&\left.\sup _{s \in K_{2}}\left|\zeta_{u_{N}}\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right)-f_{2}(s)\right|<\varepsilon_{2}\right\} \\
&=m_{H}\left\{\left(\omega_{1}, \omega_{2}\right) \in \Omega: \sup _{s \in K_{1}}\left|\zeta\left(s, \omega_{1} ; \mathfrak{a}\right)-f_{1}(s)\right|<\varepsilon_{1}\right. \\
&\left.\sup _{s \in K_{2}}\left|\zeta\left(s, \alpha, \omega_{2} ; \mathfrak{b}\right)-f_{2}(s)\right|<\varepsilon_{2}\right\}
\end{aligned}
$$

exists and is positive for all but at most countably many $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$.
We observe that the set $L\left(\mathbb{P} ; \alpha, h_{1}, h_{2}, \pi\right)$ is non-empty. We recall that the numbers $\eta_{1}, \ldots, \eta_{r}$ are algebraically independent over \mathbb{Q} if it does not exist any polynomial $p\left(s, \ldots, s_{r}\right) \neq 0$ with rational coefficients such that $p\left(\eta_{1}, \ldots, \eta_{r}\right)=$ 0 . The Nesterenko theorem asserts [36] that the numbers π and e^{π} are algebraically independent over \mathbb{Q}. From the latter theorem, it follows that the set
$L\left(\mathbb{P} ; 1 / \pi, h_{1}, h_{2}, \pi\right)$ with rational positive h_{1} and h_{2} is linearly independent over \mathbb{Q}. The Nesterenko theorem implies the transcendence of the numbers π and e^{π}. Suppose, on the contrary, that the set $L\left(\mathbb{P} ; 1 / \pi, h_{1}, h_{2}, \pi\right)$ is not linearly independent over \mathbb{Q}. Then there exist integers $k_{1}, \ldots, k_{r_{1}}, \widehat{k}_{1}, \ldots, \widehat{k}_{r_{2}}$ and \widetilde{k}, not all zeros, such that

$$
\begin{aligned}
& k_{1} h_{1} \log p_{1}+\ldots+k_{r_{1}} h_{1} \log p_{r_{1}}+\widehat{k}_{1} h_{2} \log \left(m_{1}+1 / \pi\right)+\ldots \\
& \quad+\widehat{k}_{r_{2}} h_{2} \log \left(m_{r_{2}}+1 / \pi\right)+\widetilde{k} \pi=0
\end{aligned}
$$

Hence,

$$
p_{1}^{l_{1}} \ldots p_{r_{1}}^{l_{r_{1}}}\left(m_{1}+1 / \pi\right)^{\hat{l}_{1}} \ldots\left(m_{r_{2}}+1 / \pi\right)^{\hat{l}_{r_{2}}} \mathrm{e}^{\tilde{l} \pi}=1
$$

with some integers $l_{1}, \ldots, l_{r_{1}}, \widehat{l}_{1}, \ldots, \widehat{l}_{r_{2}}$ and \tilde{l}, and this contradicts the algebraic independence of the numbers π and e^{π}. Similarly, the equalities

$$
\begin{aligned}
& k_{1} h_{1} \log p_{1}+\ldots+k_{r_{1}} h_{1} \log p_{r_{1}}+\widehat{k}_{1} h_{2} \log \left(m_{1}+1 / \pi\right)+\ldots \\
& \quad+\widehat{k}_{r_{2}} h_{2} \log \left(m_{r_{2}}+1 / \pi\right)=0 \\
& k_{1} h_{1} \log p_{1}+\ldots+k_{r_{1}} h_{1} \log p_{r_{1}}+\widetilde{k} \pi=0
\end{aligned}
$$

contradict the transcendence of the numbers π and e^{π}, respectively. Moreover, it is well known that the set $\{\log p: p \in \mathbb{P}\}$ is linearly independent over \mathbb{Q}, therefore, the equality

$$
k_{1} h_{1} \log p_{1}+\ldots+k_{r_{1}} h_{1} \log p_{r_{1}}=0
$$

gives again a contradiction.
A proof of Theorem 6 is probabilistic, it is based on a limit theorem in the space $H^{2}(D)$ for periodic zeta-functions obtained in [13]. Moreover, the application of a limit theorem requires a certain estimate in the mean for the metric in $H^{2}(D)$.

2 The main equality

We start with recalling the metric in $H^{2}(D)$. For $g_{1}, g_{2} \in H(D)$, let

$$
\rho\left(g_{1}, g_{2}\right)=\sum_{l=1}^{\infty} 2^{-l} \frac{\sup _{s \in K_{l}}\left|g_{1}(s)-g_{2}(s)\right|}{1+\sup _{s \in K_{l}}\left|g_{1}(s)-g_{2}(s)\right|}
$$

where $\left\{K_{l}: l \in \mathbb{N}\right\} \subset D$ is a sequence of compact embedded set such that D is the union of the sets K_{l}, and each compact set of D lies in some K_{l}. Then, ρ is a metric which induces the topology of uniform convergence on compacta in the space $H(D)$. For $\underline{g}_{l}=\left(g_{l 1}, g_{l 2}\right), l=1,2$, let

$$
\rho_{2}\left(\underline{g}_{1}, \underline{g}_{2}\right)=\max \left(\rho\left(g_{11}, g_{12}\right), \rho\left(g_{21}, g_{22}\right)\right)
$$

Then, ρ_{2} is a metric in $H^{2}(D)$ inducing the product topology.

In this section, we consider the mean value of the distance between $\underline{\zeta}(s+$ $i k \underline{h}, \alpha ; \mathfrak{a}, \mathfrak{b})$ and $\underline{\zeta}_{u_{N}}(s+i k \underline{h}, \alpha ; \mathfrak{a}, \mathfrak{b})$, where

$$
\begin{aligned}
\underline{\zeta}(s+i k \underline{h}, \alpha ; \mathfrak{a}, \mathfrak{b}) & =\left(\zeta\left(s+i k h_{1} ; \mathfrak{a}\right), \zeta(s+i k h, \alpha ; \mathfrak{b})\right), \\
\underline{\zeta}_{u_{N}}(s+i k \underline{h}, \alpha ; \mathfrak{a}, \mathfrak{b}) & =\left(\zeta_{u_{N}}\left(s+i k h_{1} ; \mathfrak{a}\right), \zeta_{u_{N}}(s+i k h, \alpha ; \mathfrak{b})\right)
\end{aligned}
$$

and $\underline{h}=\left(h_{1}, h_{2}\right)$. For this, we apply the following lemmas.
Lemma 1. Suppose that $u_{N} \rightarrow \infty$ and $u_{N} \ll N^{2}$ as $N \rightarrow \infty$. Then, for every $h_{1}>0$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \rho\left(\zeta\left(s+i k h_{1} ; \mathfrak{a}\right), \zeta_{u_{N}}(s+i k h ; \mathfrak{a})\right)=0 .
$$

The lemma is Lemma 1 from [10].
Lemma 2. For every fixed $\sigma>1 / 2, h_{2}>0$ and $t \in \mathbb{R}$, the estimate

$$
\sum_{k=0}^{N}\left|\zeta\left(\sigma+i k h_{2}+i t, \alpha ; \mathfrak{b}\right)\right|^{2}<_{\sigma, \alpha, \mathfrak{b}} N(1+|t|)
$$

is valid.
A proof of lemma is given in [13].
Lemma 3. Under hypotheses of Lemma 1,

$$
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \rho\left(\zeta\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right), \zeta_{u_{N}}\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right)\right)=0
$$

Proof. In virtue of the definition of the metric ρ, it is sufficient to show that the equality

$$
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \sup _{s \in K}\left|\zeta\left(s+i k h_{2}, \alpha ; \mathfrak{a}\right)-\zeta_{u_{N}}\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right)\right|=0
$$

is true for every compact set $K \subset D$. Using the Mellin formula

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{a-i \infty}^{a+i \infty} \Gamma(z) b^{-z} \mathrm{~d} z=\mathrm{e}^{-b} \tag{2.1}
\end{equation*}
$$

where $\Gamma(z)$ denotes the Euler gamma-function, and $a, b>0$, leads, for $\sigma>1 / 2$, to the integral representation

$$
\begin{equation*}
\zeta_{u_{N}}(s, \alpha ; \mathfrak{b})=\frac{1}{2 \pi i} \int_{\theta-i \infty}^{\theta+i \infty} \zeta(s+z, \alpha ; \mathfrak{b}) l_{u_{N}}(z) \mathrm{d} z \tag{2.2}
\end{equation*}
$$

where θ comes from the definition of $v_{u_{N}}(m, \alpha)$, and

$$
l_{u_{N}}(z)=\frac{1}{\theta} \Gamma\left(\frac{z}{\theta}\right) u_{N}^{z} .
$$

Actually, in view of (2.1),

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\theta-i \infty}^{\theta+i \infty} \frac{1}{(m+\alpha)^{z}} \frac{1}{\theta} \Gamma\left(\frac{z}{\theta}\right) u_{N}^{z} \mathrm{~d} z & =\frac{1}{2 \pi i} \int_{\theta-i \infty}^{\theta+i \infty} \Gamma\left(\frac{z}{\theta}\right)\left(\frac{m+\alpha}{u_{N}}\right)^{(-z / \theta) \theta} \mathrm{d} z \\
& =\exp \left\{-\left((m+\alpha) / u_{N}\right)^{\theta}\right\}
\end{aligned}
$$

Therefore, since $\theta+\sigma>1$ for $\sigma>1 / 2$, we have

$$
\begin{aligned}
\zeta_{u_{N}}(s, \alpha ; \mathfrak{b}) & =\frac{1}{2 \pi i} \int_{\theta-i \infty}^{\theta+i \infty} \sum_{m=0}^{\infty} \frac{b_{m} v_{u_{N}}(m, \alpha)}{(m+\alpha)^{s+z}} l_{u_{N}}(z) \mathrm{d} z \\
& =\frac{1}{2 \pi i} \int_{\theta-i \infty}^{\theta+i \infty} \zeta(s+z, \alpha ; \mathfrak{b}) l_{u_{N}}(z) \mathrm{d} z .
\end{aligned}
$$

Fix a compact set $K \subset D$. Then, there exists a number $0<\delta<\frac{1}{6}$ such that $1 / 2+2 \delta \leqslant \sigma \leqslant 1-\delta$ for $s=\sigma+i t \in K$. Let $\theta=1 / 2+\delta$ and $\theta_{1}=1 / 2+\delta-\sigma$. Then, $-1 / 2+2 \delta \leqslant \theta_{1} \leqslant-\delta$. Therefore, the integrand of (2.2), in the strip $\theta_{1} \leqslant \sigma \leqslant \theta$, has a simple pole at $z=0$ and a possible simple pole at $z=1-s$. Hence, by the residue theorem, we find, for $s \in K$,

$$
\zeta_{u_{N}}(s, \alpha ; \mathfrak{b})-\zeta(s, \alpha ; \mathfrak{b})=\frac{1}{2 \pi i} \int_{\theta_{1}-i \infty}^{\theta_{1}+i \infty} \zeta(s+z, \alpha ; \mathfrak{b}) l_{u_{N}}(z) \mathrm{d} z+R_{N}(s, \alpha ; \mathfrak{b})
$$

where

$$
R_{N}(s, \alpha ; \mathfrak{b})= \begin{cases}0 & \text { if } r \stackrel{\text { def }}{=} \operatorname{Res} \zeta(s, \alpha ; \mathfrak{b})=0 \\ r l_{u_{N}}(1-s) & \text { otherwise }\end{cases}
$$

The latter equality, for $s=\sigma+i t \in K$, gives

$$
\begin{aligned}
& \zeta_{u_{N}}\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right)-\zeta\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right) \\
&= \frac{1}{2 \pi} \int_{-\infty}^{\infty} \zeta\left(\frac{1}{2}+\delta+i t+i k h_{2}+i \tau, \alpha ; \mathfrak{b}\right) l_{u_{N}}\left(\frac{1}{2}+\delta-\sigma+i \tau\right) \mathrm{d} \tau \\
&+R_{N}\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right) \\
& \ll \int_{-\infty}^{\infty}\left|\zeta\left(\frac{1}{2}+\delta+i k h_{2}+i \tau, \alpha ; \mathfrak{b}\right)\right| \sup _{s \in K}\left|l_{u_{N}}\left(\frac{1}{2}+\delta-s+i \tau\right)\right| \mathrm{d} \tau \\
&+\sup _{s \in K}\left|R_{N}\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right)\right| .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\frac{1}{N+1} \sum_{k=0}^{N} & \sup _{s \in K}\left|\zeta\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right)-\zeta_{u_{N}}\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right)\right| \\
< & \int_{-\infty}^{\infty}\left(\frac{1}{N+1} \sum_{k=0}^{N}\left|\zeta\left(1 / 2+\delta+i k h_{2}+i \tau, \alpha ; \mathfrak{b}\right)\right|\right) \\
& \quad \times \sup _{s \in K}\left|l_{u_{N}}(1 / 2+\delta-s+i \tau)\right| \mathrm{d} \tau \\
& +\frac{1}{N+1} \sum_{k=0}^{N} \sup _{s \in K}\left|R_{N}\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right)\right| \stackrel{\text { def }}{=} I_{N}+S_{N} . \tag{2.3}
\end{align*}
$$

For estimating of the integral I_{N}, we apply Lemma 2. The Cauchy-Schwarz inequality and Lemma 2 yield

$$
\begin{align*}
& \frac{1}{N+1} \sum_{k=0}^{N}\left|\zeta\left(1 / 2+\delta+i k h_{2}+i \tau, \alpha ; \mathfrak{b}\right)\right| \\
& \ll\left(\frac{1}{N+1} \sum_{k=0}^{N}\left|\zeta\left(1 / 2+\delta+i k h_{2}+i \tau, \alpha ; \mathfrak{b}\right)\right|^{2}\right)^{1 / 2} \ll(1+|\tau|)^{1 / 2} \tag{2.4}
\end{align*}
$$

By the definition of $l_{u_{N}}(s)$, using the classical bound for the gamma-function

$$
\begin{equation*}
\Gamma(\sigma+i t) \ll \exp \{-c(1+|t|)\}, \quad c>0 \tag{2.5}
\end{equation*}
$$

which is uniform in σ lying in every fixed interval $\left[\sigma_{1}, \sigma_{2}\right]$, we find that, for $s \in K$,

$$
\begin{aligned}
l_{u_{N}}(1 / 2+\delta-s+i \tau) & \lll \delta u_{N}^{1 / 2+\delta-\sigma} \exp \left\{-\frac{c}{\theta}(1+|\tau-t|)\right\} \\
& <_{\delta, K} u_{N}^{-\delta} \exp \left\{-c_{1}|\tau|\right\}, \quad c_{1}>0
\end{aligned}
$$

because of boundedness of t. This and (2.4) show that

$$
\begin{equation*}
I_{N} \ll \delta, h_{2}, \alpha, \mathfrak{b}, K<1 u_{N}^{-\delta} \int_{-\infty}^{\infty}(1+|\tau|)^{1 / 2} \exp \left\{-c_{1}|\tau|\right\} \mathrm{d} \tau \ll_{\delta, h_{2}, \alpha, \mathfrak{b}, K} u_{N}^{-\delta} \tag{2.6}
\end{equation*}
$$

By the definitions of $R_{N}(s, \alpha ; \mathfrak{b})$ and $l_{u_{N}}(s)$, and (2.5), for $s \in K$, we have

$$
\begin{aligned}
& R_{N}\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right) \ll \delta, \alpha, \mathfrak{b} u_{N}^{1-\sigma} \exp \left\{-c_{2}\left(1+k h_{2}|t|\right)\right\} \\
& \ll \delta, \alpha, \mathfrak{b}, K \\
& u_{N}^{1 / 2-2 \delta} \exp \left\{-c_{3}\left(1+k h_{2}\right)\right\}, \quad c_{2}, c_{3}>0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& S_{N}<_{\delta, K} u_{N}^{1 / 2-2 \delta} \frac{1}{N} \sum_{k=0}^{N} \exp \left\{-c_{3}\left(1+k h_{2}\right)\right\}<_{\delta, \alpha, \mathfrak{b}, K} u_{N}^{1 / 2-2 \delta} \\
& \times\left(\frac{\log N}{N}+\frac{1}{N} \sum_{k \geqslant \log N} \exp \left\{-c_{3} k h_{2}\right\}\right) \ll_{\delta, \alpha, \mathfrak{b}, K, h_{2}} u_{N}^{1 / 2-2 \delta} \frac{\log N}{N} .
\end{aligned}
$$

Thus, in view of (2.6),

$$
I_{N}+S_{N} \ll_{\delta, h_{2}, \alpha, \mathfrak{b}, K} u_{N}^{-\delta}+u_{N}^{1 / 2-2 \delta} \frac{\log N}{N}
$$

Since $u_{N} \rightarrow \infty$ and $u_{N} \ll N^{2}$, this shows that

$$
\lim _{N \rightarrow \infty}\left(I_{N}+S_{N}\right)=0
$$

and, by (2.3), the lemma is proved.
Now, we state the main result on the closeness of $\underline{\zeta}(s, \alpha ; \mathfrak{a}, \mathfrak{b}), \underline{\zeta}_{u_{N}}(s, \alpha ; \mathfrak{a}, \mathfrak{b})$.

Lemma 4. Suppose that $u_{N} \rightarrow \infty$ and $u_{N} \ll N^{2}$ as $N \rightarrow \infty$. Then, for every positive h_{1} and h_{2},

$$
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \rho_{2}\left(\underline{\zeta}(s+i k \underline{h}, \alpha ; \mathfrak{a}, \mathfrak{b}), \underline{\zeta}_{u_{N}}(s+i k \underline{h}, \alpha ; \mathfrak{a}, \mathfrak{b})\right)=0
$$

Proof. By the definition of the metric ρ_{2}, it suffices to prove that

$$
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \rho\left(\zeta\left(s+i k h_{1} ; \mathfrak{a}\right), \zeta_{u_{N}}\left(s+i k h_{1} ; \mathfrak{a}\right)\right)=0
$$

and

$$
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \rho\left(\zeta\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right), \zeta_{u_{N}}\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right)\right)=0
$$

Therefore, the lemma is consequence of Lemmas 1 and 3 .

3 Limit theorems

Recall that $H(D)$ is the space of analytic on D functions. The proof of Theorem 6 relies on a discrete limit theorem for $\underline{\zeta}_{u_{N}}(s, \alpha ; \mathfrak{a}, \mathfrak{b})$ in the space $H^{2}(D)$ on weakly convergent probability measures. For brevity, let $P_{\underline{\zeta}}$ be the distribution of the random element $\underline{\zeta}\left(s, \alpha, \omega_{1}, \omega_{2} ; \mathfrak{a}, \mathfrak{b}\right)$, i.e.,

$$
P_{\underline{\zeta}}(A)=m_{H}\left\{\left(\omega_{1}, \omega_{2}\right) \in \Omega: \underline{\zeta}\left(s, \alpha, \omega_{1}, \omega_{2} ; \mathfrak{a}, \mathfrak{b}\right) \in A\right\}, \quad A \in \mathcal{B}\left(H^{2}(D)\right) .
$$

For $A \in \mathcal{B}\left(H^{2}(D)\right)$, define

$$
P_{N}(A)=\frac{1}{N+1} \#\{0 \leqslant k \leqslant N: \underline{\zeta}(s+i k \underline{h}, \alpha ; \mathfrak{a}, \mathfrak{b}) \in A\} .
$$

Lemma 5. [13]. Suppose that the set $L\left(\mathbb{P} ; \alpha, h_{1}, h_{2}, \pi\right)$ is linearly independent over \mathbb{Q}. Then, P_{N} converges weakly to $P_{\underline{\zeta}}$ as $N \rightarrow \infty$.

Lemmas 4 and 5 lead to a limit theorem for $\zeta_{u_{N}}(s, \alpha ; \mathfrak{a}, \mathfrak{b})$. Let, for $A \in$ $\mathcal{B}\left(H^{2}(D)\right)$,

$$
P_{N, u_{N}}(A)=\frac{1}{N+1} \#\left\{0 \leqslant k \leqslant N: \underline{\zeta}_{u_{N}}(s+i k h, \alpha ; \mathfrak{a}, \mathfrak{b}) \in A\right\} .
$$

Theorem 7. Suppose that the set $L\left(\mathbb{P} ; \alpha, h_{1}, h_{2}, \pi\right)$ is linearly independent over \mathbb{Q}, and $u_{N} \rightarrow \infty$ and $u_{N} \ll N^{2}$ as $N \rightarrow \infty$. Then, $P_{N, u_{N}}$ converges weakly to $P_{\underline{\zeta}}$ as $N \rightarrow \infty$.

Proof. Let ξ_{N} be a random variable defined on a certain probability space $(\widehat{\Omega}, \mathcal{B}(\widehat{\Omega}), \mu)$ and having the distribution $\mu\left\{\xi_{N}=k\right\}=1 /(N+1), k=0,1, \ldots, N$. We will use the equivalent of weak convergence of probability measures in
terms of closed sets, namely, if P and $P_{n}, n \in \mathbb{N}$, are probability measures on ($\mathbb{X}, \mathcal{B}(\mathbb{X})$), then P_{n}, as $n \rightarrow \infty$, converges weakly to P if and only if

$$
\limsup _{n \rightarrow \infty} P_{n}(F) \leqslant P(F)
$$

for every closed set $F \subset \mathbb{X}$. Fix a closed set $F \subset H^{2}(D), \varepsilon>0$, and define the set

$$
F_{\varepsilon}=\left\{\underline{g} \in H^{2}(D): \inf _{\underline{\underline{g}} \in F}\left\{\rho_{2}(\underline{g}, \underline{\widehat{g}}) \leqslant \varepsilon\right\}\right\}
$$

Then, the set F_{ε} is closed as well. Define two $H^{2}(D)$-valued random elements

$$
\underline{X}_{N}=\underline{X}_{N}(s)=\underline{\zeta}\left(s+i \xi_{N} \underline{h}, \alpha ; \mathfrak{a}, \mathfrak{b}\right), \quad \underline{Y}_{N}=\underline{Y}_{N}(s)=\underline{\zeta}_{u_{N}}\left(s+i \xi_{N} \underline{h}, \alpha ; \mathfrak{a}, \mathfrak{b}\right)
$$

By the definition of the random variable ξ_{N}, the random elements \underline{X}_{N} and \underline{Y}_{N} have the distributions P_{N} and $P_{N, u_{N}}$, respectively. Moreover,

$$
\left\{\underline{Y}_{N} \in F_{\varepsilon}\right\} \subset\left\{\underline{X}_{N} \in F\right\} \cup\left\{\rho_{2}\left(\underline{X}_{N}, \underline{Y}_{N}\right) \geqslant \varepsilon\right\}
$$

Hence,

$$
\begin{align*}
& \mu\left(F_{\varepsilon}\right) \leqslant \mu(F)+\mu\left\{\rho_{2}\left(\underline{X}_{N}, \underline{Y}_{N}\right) \geqslant \varepsilon\right\} \\
& P_{N, u_{N}}\left(F_{\varepsilon}\right) \leqslant P_{N}(F)+\mu\left\{\rho_{2}\left(\underline{X}_{N}, \underline{Y}_{N}\right) \geqslant \varepsilon\right\} . \tag{3.1}
\end{align*}
$$

By Lemma 5 and equivalent of weak convergence in terms of closed sets,

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} P_{N}(F) \leqslant P_{\underline{\zeta}}(F) \tag{3.2}
\end{equation*}
$$

Moreover, Lemma 4 implies that

$$
\begin{aligned}
& \limsup _{N \rightarrow \infty} \mu\left\{\rho_{2}\left(\underline{X}_{N}, \underline{Y}_{N}\right) \geqslant \varepsilon\right\}=\limsup _{N \rightarrow \infty} \frac{1}{N+1} \#\{0 \leqslant k \leqslant N: \\
& \left.\quad \rho_{2}\left(\underline{\zeta}(s+i k \underline{h}, \alpha ; \mathfrak{a}, \mathfrak{b}), \underline{\zeta}_{u_{N}}(s+i k \underline{h}, \alpha ; \mathfrak{a}, \mathfrak{b})\right) \geqslant \varepsilon\right\} \\
& \leqslant \limsup _{N \rightarrow \infty} \frac{1}{\varepsilon(N+1)} \sum_{k=0}^{N} \rho_{2}\left(\underline{\zeta}(s+i k \underline{h}, \alpha ; \mathfrak{a}, \mathfrak{b}), \underline{\zeta}_{u_{N}}(s+i k \underline{h}, \alpha ; \mathfrak{a}, \mathfrak{b})\right)=0 .
\end{aligned}
$$

Thus, in view of (3.1) and (3.2),

$$
\limsup _{N \rightarrow \infty} P_{N, u_{N}}\left(F_{\varepsilon}\right) \leqslant P_{\underline{\zeta}}(F) .
$$

Letting $\varepsilon \rightarrow+0$, we obtain $\lim \sup _{N \rightarrow \infty} P_{N, u_{N}}(F) \leqslant P_{\zeta}(F)$, and this together with equivalent of weak convergence in terms of closed sets proves the theorem.

Theorem 7 implies the weak convergence for the corresponding probability measures in the space \mathbb{R}^{2}. For $A \in \mathcal{B}\left(\mathbb{R}^{2}\right)$, define

$$
\begin{aligned}
Q_{N, u_{N}}(A)=\frac{1}{N+1} \#\{0 \leqslant k \leqslant N: & \left(\sup _{s \in K_{1}}\left|\zeta_{u_{N}}\left(s+i k h_{1} ; \mathfrak{a}\right)-f_{1}(s)\right|,\right. \\
& \left.\left.\sup _{s \in K_{2}}\left|\zeta_{u_{N}}\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right)-f_{2}(s)\right|\right) \in A\right\} .
\end{aligned}
$$

Corollary 1. Suppose that the set $L\left(\mathbb{P} ; \alpha, h_{1}, h_{2}, \pi\right)$ is linearly independent over \mathbb{Q}, and $u_{N} \rightarrow \infty$ and $u_{N} \ll N^{2}$ as $N \rightarrow \infty$. Let K_{1}, K_{2} and $f_{1}(s), f_{2}(s)$ be as in Theorem 6. Then $Q_{N, u_{N}}$ converges weakly to the measure

$$
\begin{align*}
m_{H}\left\{\left(\omega_{1}, \omega_{2}\right) \in \Omega:\right. & \left(\sup _{s \in K_{1}}\left|\zeta\left(s, \omega_{1} ; \mathfrak{a}\right)-f_{1}(s)\right|,\right. \\
& \left.\left.\sup _{s \in K_{2}}\left|\zeta\left(s, \alpha, \omega_{2} ; \mathfrak{b}\right)-f_{2}(s)\right|\right) \in A\right\}, A \in \mathcal{B}\left(\mathbb{R}^{2}\right), \tag{3.3}
\end{align*}
$$

as $N \rightarrow \infty$.
Proof. Consider the mapping $u: H^{2}(D) \rightarrow \mathbb{R}^{2}$ defined by

$$
u\left(g_{1}, g_{2}\right)=\left(\sup _{s \in K_{1}}\left|g_{1}(s)-f_{1}(s)\right|, \sup _{s \in K_{2}}\left|g_{2}(s)-f_{2}(s)\right|\right), \quad g_{1}, g_{2} \in H(D)
$$

Then, the mapping u is continuous. Actually, suppose that $\left(g_{N 1}, g_{N 2}\right) \rightarrow$ $\left(g_{1}, g_{2}\right)$ as $N \rightarrow \infty$ in the space $H^{2}(D)$. Since the convergence in $H(D)$ is uniform on compact sets, we have

$$
\lim _{N \rightarrow \infty} \sup _{s \in K_{j}}\left|g_{N j}(s)-g_{j}(s)\right|=0, \quad j=1,2
$$

Therefore, using the triangle inequality, we obtain that

$$
\left(\sup _{s \in K_{j}}\left|g_{N j}(s)-f_{j}(s)\right|-\sup _{s \in K_{j}}\left|g_{j}(s)-f_{j}(s)\right|\right) \leqslant \sup _{s \in K_{j}}\left|g_{N j}-g_{j}(s)\right| \xrightarrow[N \rightarrow \infty]{ } 0
$$

for $j=1,2$. This proves that

$$
\lim _{N \rightarrow \infty} u\left(g_{N 1}, g_{N 2}\right)=u\left(g_{1}, g_{2}\right)
$$

i.e., u is continuous.

By the definitions of $u, P_{N, u_{N}}$ and $Q_{N, u_{N}}$, for $A \in \mathcal{B}\left(\mathbb{R}^{2}\right)$, we have

$$
\begin{aligned}
Q_{N, u_{N}}(A) & =\frac{1}{N+1} \#\left\{0 \leqslant k \leqslant N: \underline{\zeta}_{u_{N}}(s+i k \underline{h}, \alpha ; \mathfrak{a}, \mathfrak{b}) \in u^{-1} A\right\} \\
& =P_{N, u_{N}}\left(u^{-1} A\right)=P_{N, u_{N}} u^{-1}(A)
\end{aligned}
$$

i.e., $Q_{N, u_{N}}=P_{N, u_{N}} u^{-1}$. Therefore, the continuity of u, Theorem 7 and the preservation of weak convergence under continuous mappings, show that $Q_{N, u_{N}}$ converges weakly to $P_{\underline{\zeta}} u^{-1}$, i.e., to the measure (3.3) as $N \rightarrow \infty$.

4 Proof of Theorem 6

Theorem 6 follows from Corollary 1 , weak convergence in \mathbb{R}^{2}, support of the measure $P_{\underline{\underline{\zeta}}}$, and the Mergelyan theorem on approximation of analytic functions by polynomials. We recall that the support of the measure $P_{\underline{\zeta}}$ is a minimal closed set S_{ζ} such that $P_{\zeta}\left(S_{\zeta}\right)=1$. The set S_{ζ} consists of all $\bar{g} \in H^{2}(D)$, for every open neighbourhood \bar{G} of which the inequality $P_{\underline{\zeta}}(G)>0$ is true.

Define $S(\mathfrak{a})=\{g \in H(D)$: either $g(s) \neq 0$, or $g(s) \equiv 0\}$ and $S(\mathfrak{b})=H(D)$.

Lemma 6. [13]. Suppose that the sequence \mathfrak{a} is multiplicative, and the set $L\left(\mathbb{P} ; \alpha, h_{1}, h_{2}, \pi\right)$ is linearly independent over \mathbb{Q}. Then the support of the measure $P_{\underline{\zeta}}$ is the set $S(\mathfrak{a}) \times S(\mathfrak{b})$.

The next lemma is a version of the Mergelyan theorem on approximation of analytic functions by polynomials.

Lemma 7. Suppose that $K \subset \mathbb{C}$ is a compact set with connected complement, and $g(s)$ is a continuous function on K and analytic in the interior of K. Then, for every $\varepsilon>0$, there exists a polynomial $p_{\varepsilon}(s)$ such that

$$
\sup _{s \in K}\left|g(s)-p_{\varepsilon}(s)\right|<\varepsilon
$$

Proof. (Proof of Theorem 6). It is well known that the weak convergence of probability measures is equivalent to that of the corresponding distribution functions. Recall that the distribution function $D_{n}\left(x_{1}, x_{2}\right)$, as $n \rightarrow \infty$, converges weakly to the distribution function $D\left(x_{1}, x_{2}\right)$ if

$$
\lim _{n \rightarrow \infty} D_{n}\left(x_{1}, x_{2}\right)=D\left(x_{1}, x_{2}\right)
$$

for $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ such that x_{1} and x_{2} are continuity points of the functions $D\left(x_{1},+\infty\right)$ and $D\left(+\infty, x_{2}\right)$, respectively.

Define the distribution functions

$$
\begin{gathered}
F_{N}\left(\varepsilon_{1}, \varepsilon_{2}\right)=\frac{1}{N+1} \#\left\{0 \leqslant k \leqslant N: \sup _{s \in K_{1}}\left|\zeta_{u_{N}}\left(s+i k h_{1} ; \mathfrak{a}\right)-f_{1}(s)\right|<\varepsilon_{1}\right. \\
\left.\sup _{s \in K_{2}}\left|\zeta_{u_{N}}\left(s+i k h_{2}, \alpha ; \mathfrak{b}\right)-f_{2}(s)\right|<\varepsilon_{2}\right\} \\
F\left(\varepsilon_{1}, \varepsilon_{2}\right)=m_{H}\left\{\left(\omega_{1}, \omega_{2}\right) \in \Omega: \sup _{s \in K_{1}}\left|\zeta\left(s, \omega_{1} ; \mathfrak{a}\right)-f_{1}(s)\right|<\varepsilon_{1}\right. \\
\left.\sup _{s \in K_{2}}\left|\zeta\left(s, \alpha, \omega_{2} ; \mathfrak{b}\right)-f_{2}(s)\right|<\varepsilon_{2}\right\}
\end{gathered}
$$

Then, by Corollary 1 , we have that $F_{N}\left(\varepsilon_{1}, \varepsilon_{2}\right)$ converges weakly to $F\left(\varepsilon_{1}, \varepsilon_{2}\right)$ as $N \rightarrow \infty$. Thus,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} F_{N}\left(\varepsilon_{1}, \varepsilon_{2}\right)=F\left(\varepsilon_{1}, \varepsilon_{2}\right) \tag{4.1}
\end{equation*}
$$

where ε_{1} and ε_{2} are continuity points of the distribution functions $F\left(\varepsilon_{1},+\infty\right)$ and $F\left(+\infty, \varepsilon_{2}\right)$, respectively. Since the distribution functions $F\left(\varepsilon_{1},+\infty\right)$ and $F\left(+\infty, \varepsilon_{2}\right)$ have at most countable sets of discontinuity points, the equality (4.1) is true for all but at most countably many $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$.

It remains to show that $F\left(\varepsilon_{1}, \varepsilon_{2}\right)>0$. For this, we will apply Lemma 7 .
By Lemma 7, there exist polynomials $p_{1}(s)$ and $p_{2}(s)$ such that

$$
\begin{equation*}
\sup _{s \in K_{1}}\left|f_{1}(s)-\mathrm{e}^{p_{1}(s)}\right|<\frac{\varepsilon_{1}}{2}, \quad \sup _{s \in K_{2}}\left|f_{2}(s)-p_{2}(s)\right|<\frac{\varepsilon_{2}}{2} \tag{4.2}
\end{equation*}
$$

Define the set

$$
\begin{aligned}
G_{\varepsilon_{1}, \varepsilon_{2}}=\left\{\left(g_{1}, g_{2}\right) \in H^{2}(D):\right. & \sup _{s \in K_{1}}\left|g_{1}(s)-\mathrm{e}^{p_{1}(s)}\right|<\frac{\varepsilon_{1}}{2} \\
& \left.\sup _{s \in K_{2}}\left|f_{2}(s)-p_{2}(s)\right|<\frac{\varepsilon_{2}}{2}\right\} .
\end{aligned}
$$

The point ($\left.\mathrm{e}^{p_{1}(s)}, p_{2}(s)\right)$, in view of Lemma 6, is an element of the support of the measure $P_{\underline{\zeta}}$. Therefore,

$$
\begin{equation*}
P_{\underline{\zeta}}\left(G_{\varepsilon_{1}, \varepsilon_{2}}\right)>0 . \tag{4.3}
\end{equation*}
$$

Define one more set

$$
\begin{aligned}
\mathcal{G}_{\varepsilon_{1}, \varepsilon_{2}}=\left\{\left(g_{1}, g_{2}\right) \in H^{2}(D):\right. & \sup _{s \in K_{1}}\left|g_{1}(s)-f_{1}(s)\right|<\varepsilon_{1} \\
& \left.\sup _{s \in K_{2}}\left|g_{2}(s)-f_{2}(s)\right|<\varepsilon_{2}\right\} .
\end{aligned}
$$

In view of equalities (4.2), we have the inclusion $G_{\varepsilon_{1}, \varepsilon_{2}} \subset \mathcal{G}_{\varepsilon_{1}, \varepsilon_{2}}$. Therefore, by (4.3),

$$
P_{\underline{\zeta}}\left(\mathcal{G}_{\varepsilon_{1}, \varepsilon_{2}}\right) \geqslant P_{\underline{\zeta}}\left(G_{\varepsilon_{1}, \varepsilon_{2}}\right)>0 .
$$

This and the definitions of $P_{\underline{\zeta}}$ and $\mathcal{G}_{\varepsilon_{1}, \varepsilon_{2}}$ gives the positivity of $F\left(\varepsilon_{1}, \varepsilon_{2}\right)$. The theorem is proved.

References

[1] B. Bagchi. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. PhD Thesis, Indian Statistical Institute, Calcutta, 1981.
[2] A. Balčiūnas, A. Dubickas and A. Laurinčikas. On the Hurwitz zeta-function with algebraic irrational parameter. Mathematical Notes, 105(1):173-179, 2019. https://doi.org/10.1134/S0001434619010218.
[3] A. Balčiūnas, V. Garbaliauskienė, V. Lukšienė, R. Macaitienė and A. Rimkevičienė. Joint discrete approximation of analytic functions by Hurwitz zeta-functions. Mathematical Modelling and Analysis, 27(1):88-100, 2022. https://doi.org/10.3846/mma.2022.15068.
[4] A. Balčiūnas, M. Jasas, R. Macaitienė and D. Šiaučiūnas. On the Mishou theorem for zeta-functions with periodic coefficients. Mathematics, 11(9):2042, 2023. https://doi.org/10.3390/math11092042.
[5] A. Balčiūnas, A. Laurinčikas and M. Stoncelis. On a Dirichlet series connected to a periodic Hurwitz zeta-function with transcendental and rational parameter. Mathematical Modelling and Analysis, 28(1):91-101, 2023. https://doi.org/10.3846/mma.2023.17222.
[6] E. Buivydas and A. Laurinčikas. A discrete version of the Mishou theorem. The Ramanujan Journal, 38(2):331-347, 2015. https://doi.org/10.1007/s11139-014-9631-2.
[7] E. Buivydas and A. Laurinčikas. A generalized joint discrete universality theorem for the Riemann and Hurwitz zeta-functions. Lithuanian Mathematical Journal, 55(2):193-206, 2015. https://doi.org/10.1007/s10986-015-9273-0.
[8] V. Franckevič, A. Laurinčikas and D. Šiaučiūnas. On approximation of analytic functions by periodic Hurwitz zeta-functions. Mathematical Modelling and Analysis, 24(1):20-33, 2019. https://doi.org/10.3846/mma.2019.002.
[9] M. Jasas, A. Laurinčikas and D. Šiaučiūnas. On the approximation of analytic functions by shifts of absolutely convergent Dirichlet series. Mathematical Notes, 109(5):876-883, 2021. https://doi.org/10.1134/S0001434621050217.
[10] M. Jasas, A. Laurinčikas, M. Stoncelis and D. Šiaučiūnas. Discrete universality of absolutely convergent Dirichlet series. Mathematical Modelling and Analysis, 27(1):78-87, 2022. https://doi.org/10.3846/mma.2022.15069.
[11] A. Javtokas and A. Laurinčikas. Universality of the periodic Hurwitz zetafunction. Integral Transforms and Special Functions, 17(10):711-722, 2006. https://doi.org/10.1080/10652460600856484.
[12] R. Kačinskaitè and A. Laurinčikas. The joint distribution of periodic zetafunctions. Studia Scientiarum Mathematicarum Hungarica, 48(2):257-279, 2011. https://doi.org/10.1556/sscmath.48.2011.2.1162.
[13] A. Laurinčikas. The joint discrete universality of periodic zeta-functions. In J. Sander, J. Steuding and R. Steuding(Eds.), From Arithmetic to ZetaFunctions, Number Theory in Memory of Wolfgang Schwarz, pp. 231-246. Springer, 2016. https://doi.org/10.1007/978-3-319-28203-9_15.
[14] A. Laurinčikas. A discrete version of the Mishou theorem. II. Proceedings of the Steklov Institute of Mathematics, 296(1):172-182, 2017. https://doi.org/10.1134/S008154381701014X.
[15] A. Laurinčikas. On discrete universality of the Hurwitz zeta-function. Results in Mathematics, 72(1):907-917, 2017. https://doi.org/10.1007/s00025-017-0702-8.
[16] A. Laurinčikas. Discrete universality of the Riemann zeta-function and uniform distribution modulo 1. St. Petersburg Mathematical Journal, 30:103-110, 2019. https://doi.org/10.1090/spmj/1532.
[17] A. Laurinčikas. On the Mishou theorem with algebraic parameter. Siberian Mathematical Journal, 60(6):1075-1082, 2019. https://doi.org/10.1134/S0037446619060144.
[18] A. Laurinčikas. Universality of the Riemann zeta-function in short intervals. Journal of Number Theory, 204:279-295, 2019. https://doi.org/10.1016/j.jnt.2019.04.006.
[19] A. Laurinčikas. Discrete universality of the Riemann zeta-function in short intervals. Applicable Analysis and Discrete Mathematics, 14(2):382-405, 2020. https://doi.org/10.2298/AADM190704019L.
[20] A. Laurinčikas. Approximation by generalized shifts of the Riemann zetafunction in short intervals. The Ramanujan Journal, 56(1):309-322, 2021. https://doi.org/10.1007/s11139-021-00405-y.
[21] A. Laurinčikas. Approximation of analytic functions by an absolutely convergent Dirichlet series. Archiv der Mathematik, 117(1):53-63, 2021. https://doi.org/10.1007/s00013-021-01616-x.
[22] A. Laurinčikas. On the universality of the Riemann and Hurwitz zeta-functions. Results in Mathematics, 77(1):29, 2021. https://doi.org/10.1007/s00025-021-01564-6.
[23] A. Laurinčikas. The universality of absolutely covergent series on short intervals. Siberian Mathematical Journal, 62(6):1076-1083, 2021. https://doi.org/10.1134/S0037446621060094.
[24] A. Laurinčikas. On joint universality of the Riemann and Hurwitz zeta-functions. Mathematical Notes, 111(3):571-578, 2022. https://doi.org/10.1134/S0001434622030257.
[25] A. Laurinčikas. On the universality of the zeta functions of certain cusp forms. Sbornik: Mathematics, 213(5):659-670, 2022. https://doi.org/10.1070/SM9650.
[26] A. Laurinčikas. New aspects of universality of Hurwitz zeta-functions. Analysis Mathematica, 49(1):183-193, 2023. https://doi.org/10.1007/s10476-023-0188-4.
[27] A. Laurinčikas and R. Garunkštis. The Lerch Zeta-Function. Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
[28] A. Laurinčikas, R. Macaitiené, D. Mochov and D. Šiaučiūnas. Universality of the periodic Hurwitz zeta-function with rational parameter. Siberian Mathematical Journal, 59(5):894-900, 2018. https://doi.org/10.1134/S0037446618050130.
[29] A. Laurinčikas, R. Macaitienė and D. Šiaučiūnas. A generalization of the Voronin theorem. Lithuanian Mathematical Journal, 59(2):156-168, 2019. https://doi.org/10.1007/s10986-019-09418-z.
[30] A. Laurinčikas, R. Macaitienė and D. Šiaučiūnas. Universality of an absolutely convergent Dirichlet series with modified shifts. Turkish Journal of Mathematics, 46(6):2440-2449, 2022. https://doi.org/10.55730/1300-0098.3279.
[31] A. Laurinčikas and D. Šiaučiūnas. Remarks on the universality of the periodic zeta-function. Mathematical Notes, 80(3):532-538, 2006. https://doi.org/10.1007/s11006-006-0171-y.
[32] A. Laurinčikas and D. Šiaučiūnas. Discrete approximation by Dirichlet series connected to the Riemann zeta-function. Mathematics, 9 (10):1073, 2021. https://doi.org/10.3390/math9101073.
[33] A. Laurinčikas, D. Šiaučiūnas and G. Vadeikis. Weighted discrete universality of the Riemann zeta-function. Mathematical Modelling and Analysis, 25(1):21-36, 2020. https://doi.org/10.3846/mma.2020.10436.
[34] A. Laurinčikas, D. Šiaučiūnas and G. Vadeikis. A weighted version of the Mishou theorem. Mathematical Modelling and Analysis, 26(1):21-33, 2021. https://doi.org/10.3846/mma.2021.12445.
[35] H. Mishou. The joint value-distribution of the Riemann zeta function and Hurwitz zeta functions. Lithuanian Mathematical Journal, 47(1):32-47, 2007. https://doi.org/10.1007/s10986-007-0003-0.
[36] Yu.V. Nesterenko. Modular functions and transcendence questions. Sbornik: Mathematics, 187(9):1319-1348, 1996. https://doi.org/10.1070/sm1996v187n09abeh000158.
[37] A. Reich. Werteverteilung von Zetafunktionen. Archiv der Mathematik, 34(1):440-451, 1980. https://doi.org/10.1007/BF01224983.
[38] A. Sourmelidis and J. Steuding. On the value distribution of Hurwitz zetafunctions with algebraic parameter. Constructive Approximation, 55(3):829-860, 2022. https://doi.org/10.1007/s00365-021-09561-2.
[39] S.M. Voronin. Theorem on the "universality" of the Riemann zeta-function. Izv. Akad. Nauk SSSR, Ser. Matem., 39:475-486, 1975. (in Russian)

[^0]: Copyright (C) 2024 The Author(s). Published by Vilnius Gediminas Technical University This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

