
Mathematical Modelling and Analysis

Volume 29, Issue 2, 178–192, 2024

https://doi.org/10.3846/mma.2024.19493

Joint Discrete Approximation of Analytic
Functions by Shifts of Lerch Zeta-Functions
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Abstract. The Lerch zeta-function L(λ, α, s), s = σ + it, depends on two real
parameters λ and 0 < α ⩽ 1, and, for σ > 1, is defined by the Dirichlet series∑∞
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1 and hj > 0, j = 1, . . . , r. We prove that there exists a non-empty closed set of
analytic functions on the critical strip 1/2 < σ < 1 which is approximated by the
above shifts. It is proved that the set of shifts approximating a given collection of
analytic functions has a positive lower density. The case of positive density also is
discussed. A generalization for some compositions is given.
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1 Introduction

The Lerch zeta-function L(λ, α, s), s = σ+ it, with fixed parameters λ ∈ R and
0 < α ⩽ 1 is defined, in the half-plane σ > 1, by the Dirichlet series

L(λ, α, s) =

∞∑
m=0

e2πiλm

(m+ α)s
.

In virtue of periodicity of e2πiλm, it suffices to consider only the case 0 < λ ⩽ 1.
Clearly, L(1, α, s) coincides with the Hurwitz zeta-function

ζ(s, α) =

∞∑
m=0

1

(m+ α)s
, σ > 1,

and L(1, 1, s) is the Riemann zeta-function

ζ(s) =

∞∑
m=1

1

ms
, σ > 1.

Therefore, in those cases, the function L(λ, α, s) has the analytic continuation
to the whole complex plane, except for the point s = 1 which is a simple pole
with residue 1. Moreover, the identities

L (1/2, 1, s) = ζ(s)
(
1− 21−s

)
, L (1, 1/2, s) = ζ(s) (2s − 1)

are valid. For λ ̸∈ Z, the function L(λ, α, s) is entire.
The function L(λ, α, s) was introduced in [22], and independently in [9].

Among other results for L(λ, α, s), M. Lerch proved in [22] the functional equa-
tion. Let Γ (s) denote the Euler gamma-function. Then, for 0 < λ ⩽ 1 and
s ∈ C,

L(λ, α, 1− s) =
Γ (s)

(2π)s

(
exp

{
πis

2
− 2πiαλ

}
L(−α, λ, s)

+ exp

{
−πis

2
+ 2πiα(1− λ)

}
L(α, 1− λ, s)

)
.

Another proofs of the functional equation for L(λ, α, s) were proposed by
B.C. Berndt [5] and T.M. Apostol [1, 2]. The above and other analytic re-
sults on the function L(λ, α, s) also can be found in [15]. In general, the Lerch
zeta-function is an important object of analytic number theory, and appears in
solving many problems of mathematics. In particular, the function L(λ, α, s)
is useful in the theory of special functions. On the other hand, the Lerch zeta-
function is an interesting analytic object and is studied by analytic number the-
orists. Approximation problems of analytic functions by shifts of L(λ, α, s+iτ),
τ ∈ R, is one of directions of investigations of the function L(λ, α, s). We recall
that the idea of approximation of analytic functions by shifts of zeta-functions
belongs to S.M. Voronin who opened this problem in [33] for the Riemann
zeta-function and Dirichlet L-functions, and called it universality, see also [10].
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Voronin’s ideas were developed by numerous authors, see [3, 8, 12, 23, 32]. The
first result on universality of the Lerch zeta-function was obtained in [13], see
also [15]. Let D = {s ∈ C : 1/2 < σ < 1}. Denote by K the class of compact
subsets of the strip D with connected complements, and by H(K) with K ∈ K
the class of continuous functions on K that are analytic in the interior of K.
Let measA stand for the Lebesgue measure of a measurable set A ⊂ R. Then
the theorem of [13] is the following statement.

Theorem 1. Suppose that α is a transcendental number, and K ∈ K and
f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|L(λ, α, s+ iτ)− f(s)| < ε

}
> 0.

We notice that the form of Theorem 1 extends that of the Voronin theorem
in two directions. First, he approximated analytic functions only on discs of the
strip D by shifts ζ(s+ iτ). Secondly, Voronin claimed that there exists τ ∈ R
such that ζ(s + iτ) approximates a given function f(s), while, by Theorem 1,
there exist infinitely many shifts L(λ, α, s+iτ) approximating f(s). A weighted
version of Theorem 1 was obtained in [7].

Theorem 1 has its discrete version. In this case, τ runs over a certain
discrete set. Such a version of universality was proposed by A. Reich in [30]
for Dedekind zeta-functions. A discrete universality theorem for the function
L(λ, α, s) follows from a more general similar theorem for the periodic Hurwitz
zeta-function obtained in [16]. Denote by #A the number of elements of the
set A ⊂ R. Then we have

Theorem 2. [16] Suppose that the parameter λ is rational, the parameter α is
a transcendental, and the number h > 0 is such that the number exp{(2π)/h}
is rational. Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{
0 ⩽ k ⩽ N : sup

s∈K
|L(λ, α, s+ ikh)− f(s)| < ε

}
> 0.

Observe that Theorem 2 has a certain advantage against Theorem 1 because
a detection of approximating shifts in discrete set is easier than in a full interval
in the case of Theorem 1.

Theorems 1 and 2 have joint generalizations on simultaneous approxima-
tion of a collection of analytic functions. In this case, the important role is
played by a certain independence of shifts L(λj , αj , s+ iτ) or L(λj , αj , s+ ikh).
For example, in [17, 18, 19, 21, 25, 27, 28, 29], the algebraic independence of the
parameters α1, . . . , αr was applied. Recall a joint discrete universality theorem
for Lerch zeta-functions. For h > 0, define the set

L(α1, . . . , αr;h, π)

=
{(

log(m+ α1) : m ∈ N0), . . . , (log(m+ αr) : m ∈ N0

)
, 2π/h

}
,

where N0 = N ∪ {0}. Then, in [19], the following assertion was proved.
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Theorem 3. Suppose that the set L(α1, . . . , αr;h, π) is linearly independent
over the field of rational numbers Q. For j = 1, . . . , r, let Kj ∈ K and fj(s) ∈
H(Kj), and 0 < λj ⩽ 1. Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{
0 ⩽ k ⩽ N : sup

1⩽j⩽r
sup
s∈Kj

|L(λj , αj , s+ikh)−fj(s)| < ε
}
> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many
ε > 0.

All stated or mentioned above theorems are valid for some classes of pa-
rameters λ and 0 < α ⩽ 1. A question arises do the above results remain valid
for all values of parameters λ and 0 < α ⩽ 1. Unfortunately, this question is
an open problem. In [14, 20, 31], a certain type of approximation of analytic
functions by shifts of Lerch zeta-function with all parameters λ and α was
proposed. This type is not universality but shows good approximation prop-
erties of the function L(λ, α, s). We recall a discrete version of approximation
from [31]. Denote by H(D) the space of analytic on D functions endowed with
the topology of uniform convergence on compacta.

Theorem 4. [31] Suppose that the parameters λ, α and the number h > 0 are
arbitrary. Let K be a compact set of the strip D. Then there exists a closed
non-empty set Fλ,α,h ⊂ H(D) such that, for f(s) ∈ Fλ,α,h and ε > 0,

lim inf
N→∞

1

N + 1
#
{
0 ⩽ k ⩽ N : sup

s∈K
|L(λ, α, s+ ikh)− f(s)| < ε

}
> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many
ε > 0.

Here and in the sequel, “arbitrary α” means that α satisfies 0 < α ⩽ 1.
The aim of this paper is a joint version of Theorem 4. Denote

Hr(D) = H(D)× · · · ×H(D)︸ ︷︷ ︸
r

.

The space Hr(D) is metrisable. Let {Kl : l ∈ N} ⊂ D be a sequence of
compact embedded sets such that D =

⋃∞
l=1 Kl, and, for every compact set

K ⊂ D, there exists Kl such that K ⊂ Kl. Then, putting

ρ(g1, g2) =

∞∑
l=1

2−l sups∈Kl
|g1(s)− g2(s)|

1 + sups∈Kl
|g1(s)− g2(s)|

, g1, g2 ∈ H(D),

we have a metric which induces the topology of uniform convergence on com-
pacta of the space H(D). Then,

ρ(g
1
, g

2
) = max

1⩽j⩽r
ρ(g1j , g2j), g

k
= (gk1, . . . , gkr), k = 1, 2,

is a metric inducing the product topology of Hr(D).
The main result of the paper is the following theorem. Let λ = (λ1, . . . , λr),

α = (α1, . . . , αr) and h = (h1, . . . , hr).

Math. Model. Anal., 29(2):178–192, 2024.
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Theorem 5. Suppose that the parameters λj and αj, and hj > 0, j = 1, . . . , r,
are arbitrary. Then there exists a non-empty closed set Fλ,α,h ⊂ Hr(D) such
that, for compact sets K1, . . . ,Kr of D, (f1(s), . . . , fr(s)) ∈ Fλ,α,h and ε > 0,

lim inf
N→∞

1

N + 1
#
{
0 ⩽ k ⩽ N : sup

1⩽j⩽r
sup
s∈Kj

|L(λj , αj , s+ ikhj)− fj(s)| < ε
}
> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many
ε > 0.

Let L(λ, α, s) = (L(λ1, α1, s), . . . , L(λr, αr, s)). Theorem 5 can be generali-
zed for certain compositions Ψ(L(λ, α, s)). We give one example.

Theorem 6. Suppose that the parameters λj and αj, and hj > 0, j = 1, . . . , r,
are arbitrary. Then there exists a non-empty closed set Fλ,α,h ⊂ Hr(D) such
that if Ψ : Hr(D) → H(D) is a continuous operator such that, for every polyno-
mial p = p(s), the set (Ψ−1{p})∩Fλ,α,h is non-empty, then, for every compact
set K ⊂ D, f(s) ∈ Ψ(Fλ,α,h) and ε > 0,

lim inf
N→∞

1

N + 1
#
{
0 ⩽ k ⩽ N : sup

1⩽j⩽r
sup
s∈Kj

|Ψ(L(λ, α, s+ ikh)− f(s)| < ε
}
> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many
ε > 0.

To prove Theorems 5 and 6, we will obtain a probabilistic limit theorem
for L(λ, α, s) in the space Hr(D). The support of the limit measure in that
theorem will be desired set Fλ,α,h. Theorem 5 covers the results of [4] obtained
for Hurwitz zeta-functions. Joint discrete approximation by shifts of more
general zeta-functions is given in [11].

2 A limit theorem on a group

Denote by B(X) the Borel σ-field of a topological space X. Our final aim is a
limit theorem for

PN,λ,α,h(A) =
1

N + 1
# {0 ⩽ k ⩽ N : L(λ, α, s+ ikh) ∈ A} , A ∈ B(Hr(D)),

as N → ∞. We divide a proof of this theorem into lemmas, and the first of
them is a limit lemma on the r-dimensional torus. Define Ω =

∏
m∈N0

γm,
where γm = {s ∈ C : |s| = 1} for all m ∈ N0. With the product topology
and operation of pointwise multiplication, the torus Ω is a compact topological
Abelian group. Set Ωr =

∏r
j=1 Ωj , where Ωj = Ω for all j = 1, . . . , r. Then,

by the Tikhonov theorem, Ωr again is a compact topological Abelian group.
For A ∈ B(Ωr), define

QN,α,h(A) =
1

N + 1
#
{
0 ⩽ k ⩽ N :(((m+ α1)

−ikh1 : m ∈ N0), . . . ,

((m+ αr)
−ikhr : m ∈ N0)) ∈ A

}
.
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Lemma 1. Suppose that α and h are arbitrary. Then, on (Ωr,B(Ωr)), there
exists a probability measure Qα,h such that QN,α,h converges weakly to Qα,h as
N → ∞.

Proof. Proofs of limit theorems on compact groups usually are based on con-
tinuity theorems for Fourier transformations. Denote by ωj(m) the mth com-
ponent of an element of ωj ∈ Ωj , j = 1, . . . , r, m ∈ N0. Then the characters of
Ωr are of the form

χ(ω) =

r∏
j=1

∏∗

m∈N0

ω
kjm

j (m),

where ω = (ω1, . . . , ωr) denotes an element of Ωr, and the sign “∗” indicate that
only a finite number of integers kjm are distinct from zero. Hence, the Fourier
transform gN,α,h(k1, . . . , kr), kj = (kjm : kjm ∈ Z, m ∈ N0), j = 1, . . . , r, has
the representation

gN,α,h(k1, . . . , kr) =

∫
Ωr

( r∏
j=1

∏∗

m∈N0

ω
kjm

j (m)
)
dQN,α,h.

Thus, the definition of QN,α,h gives

gN,α,h(k1, . . . , kr) =
1

N + 1

N∑
k=0

r∏
j=1

∏∗

m∈N0

(m+ αj)
−ikhjkjm

=
1

N + 1

N∑
k=0

exp

{
− ik

r∑
j=1

hj

∑∗

m∈N0

kjm log(m+ αj)

}
. (2.1)

Define two sets of tuples (k1, . . . , kr). Let

A1,α,h =

{
(k1, . . . , kr) :

r∑
j=1

hj

∑∗

m∈N0

kjm log(m+ αj) = 2πl, ∃l ∈ Z
}

A2,α,h =

{
(k1, . . . , kr) :

r∑
j=1

hj

∑∗

m∈N0

kjm log(m+ αj) ̸= 2πl for every l ∈ Z
}
.

Then, clearly, for (k1, . . . , kr) ∈ A1,α,h, equality (2.1) implies

gN,α,h(k1, . . . , kr) = 1,

while, for (k1, . . . , kr) ∈ A2,α,h, we have

gN,α,h(k1, . . . , kr)=
1− exp

{
−(N+1)i

∑r
j=1 hj

∑∗
m∈N0

kjm log(m+ αj)
}

(N+1)
(
1− exp

{
−i

∑r
j=1 hj

∑∗
m∈N0

kjm log(m+αj)
}) .

This together with (2.1) shows that

lim
N→∞

gN,α,h(k1, . . . , kr) = gα,h(k1, . . . , kr), (2.2)

Math. Model. Anal., 29(2):178–192, 2024.
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where

gα,h(k1, . . . , kr) =

{
1 if (k1, . . . , kr) ∈ A1,α,h,
0 if (k1, . . . , kr) ∈ A2,α,h.

Denote by Qλ,α the probability measure on (Ωr,B(Ωr)) defined by the Fourier
transform gα,h(k1, . . . , kr). Then, in view of (2.2), we obtain that QN,λ,α con-
verges weakly to the measure Qλ,α as N → ∞. The lemma is proved. ⊓⊔

For example, if the set

{(h1 log(m+ α1) : m ∈ N0), . . . , (hr log(m+ αr) : m ∈ N0), 2π}

is linearly independent over Q, then,

gN,α,h(k1, . . . , kr) =

{
1 if (k1, . . . , kr) = (0, . . . , 0),
0 if (k1, . . . , kr) ̸= (0, . . . , 0).

Therefore, in this case, QN,α,h converges weakly to the probability Haar
measure mH on (Ωr,B(Ωr)) as N → ∞.

Lemma 1 allows to consider weak convergence for probability measures de-
fined by means of absolutely convergent Dirichlet series. Define

PN,n,λ,α,h(A) =
1

N + 1
# {0 ⩽ k ⩽ N : Ln(λ, α, s+ ikh) ∈ A}, A ∈ B(Hr(D)),

where

Ln(λ, α, s) = (Ln(λ1, α1, s), . . . , Ln(λr, αr, s))

with

Ln(λj , αj , s) =

∞∑
m=0

e2πiλjmvn(m,αj)

(m+ αj)s
, j = 1, . . . , r,

vn(m,αj) = exp
{
− ((m+ αj)/n)

θ
}
, θ > 1/2.

Obviously, the series for Ln(λj , αj , s) are absolutely convergent, say, for σ > 0.

Lemma 2. Suppose that λ, α and h are arbitrary. Then, on (Hr(D),

B(Hr(D))), there exists a probability measure P̂n,λ,α,h such that PN,n,λ,α,h con-

verges weakly to P̂n,λ,α,h as N → ∞.

Proof. For ω ∈ Ωr, define

Ln(λ, α, ω, s) = (Ln(λ1, α1, ω1, s), . . . , Ln(λr, αr, ωr, s)) ,

where

Ln(λj , αj , ωj , s) =

∞∑
m=0

e2πiλjmωj(m)vn(m,αj)

(m+ αj)s
, j = 1, . . . , r.
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Let the mapping un,λ,α : Ωr → Hr(D) be given by the formula

un,λ,α(ω) = Ln(λ, α, ω, s).

Since the series defining Ln(λ, α, ω, s), as Ln(λ, α, s), are absolutely convergent
in the stripD, the mapping un,λ,α is continuous, hence, it is (B(Ωr),B(Hr(D)))-
measurable. Moreover, by the definitions of PN,n,λ,α,h, QN,α,h and un,λ,α, we
have

un,λ,α

((
(m+ α1)

−ikh1 : m ∈ N0

)
, . . . ,

(
(m+ αr)

−ikhr : m ∈ N0

))
= Ln(λ, α, ω, s)

and, for A ∈ B(Hr(D)),

PN,n,λ,α,h(A) =
1

N + 1
#
{
0 ⩽ k ⩽ N :

( (
(m+ α1)

−ikh1 : m ∈ N0

)
, . . . ,(

(m+αr)
−ikhr :m∈N0

) )
∈ u−1

n,λ,αA
}
=QN,α,h

(
u−1
n,λ,αA

)
=QN,α,hu

−1
n,λ,α(A).

Therefore, PN,n,λ,α,h = QN,α,hu
−1
n,λ,α. Since the mapping un,λ,α is (B(Ωr),

B(Hr(D)))-measurable, the measures QN,α,hu
−1
n,λ,α and Qα,hu

−1
n,λ,α are well de-

fined. These remarks, Lemma 1 and a property of preservation of weak con-
vergence under continuous mappings, see, for example, Theorem 5.1 of [6],

show that PN,n,λ,α,h converges weakly to the probability measure P̂n,λ,α,h
def
= Qα,hu

−1
n,λ,α as N → ∞. ⊓⊔

3 Distance between L(λ, α, s) and Ln(λ, α, s)

In view of Lemma 2, to prove a limit theorem for PN,λ,α,h it is sufficient to
show that the distance between L(λ, α, s) and Ln(λ, α, s) in the space Hr(D)
is small. For this, we apply the following lemma obtained in [31].

Lemma 3. The equality

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

ρ (L(λ, α, s+ ikh), Ln(λ, α, s+ ikh)) = 0

holds for all λ, α and h > 0.

We recall that, for the proof of Lemma 3, the mean square estimates∫ T

−T

|L(λ, α, σ + it)|2 dt ≪λ,α,σ T, T > 0, (3.1)∫ T

−T

|L′(λ, α, σ + it)|2 dt ≪λ,α,σ T, T > 0, (3.2)

for 1/2 < σ < 1, the Gallagher lemma, see Lemma 1.4 of [26], connecting the
discrete and continuous mean squares, and the integral representation [15]

Ln(λ, α, s) =
1

2πi

∫ θ+i∞

θ−i∞

1

θ
L(λ, α, s+ z)Γ

(z
θ

)
nz dz

are applied.

Math. Model. Anal., 29(2):178–192, 2024.
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Lemma 4. The equality

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

ρ (L(λ, α, s+ ikh), Ln(λ, α, s+ ikh)) = 0

holds for all λ, α and h > 0.

Proof. By the definition of the metric ρ,

N∑
k=0

ρ (L(λ, α, s+ ikh), Ln(λ, α, s+ ikh))

⩽
r∑

j=1

N∑
k=0

ρ (L(λj , αj , s+ ikhj), Ln(λj , αj , s+ ikhj)) .

Therefore, the lemma is a corollary of Lemma 3. ⊓⊔

4 Relative compactness

The weak convergence for PN,λ,α,h also requires good convergence properties

for the measure P̂n,λ,α,h as n → ∞. It is sufficient that the sequence {P̂n,λ,α,h}
be relatively compact, i.e., that every sequence contained a subsequence weakly
convergent to a certain probability measure. This requirement can be replaced
by a weaker one, the tightness of {P̂n,λ,α,h}, i.e., that, for every ε > 0, there

exists a compact set K ⊂ Hr(D), such that P̂n,λ,α,h(K) > 1− ε for all n ∈ N.
We will reduce the proof of tightness for {P̂n,λ,α,h} to that of sequences of

marginal measures

P̂n,λj ,αj ,hj (A) = P̂n,λj ,αj ,hj

(
H(D)× · · · ×H(D)︸ ︷︷ ︸

j−1

×A

×H(D)× · · · ×H(D)
)
, A ∈ B(H(D)), j = 1, . . . , r.

Lemma 5. The sequence {P̂n,λj ,αj ,hj : n ∈ N} is tight for all λj , αj and hj > 0,
j = 1, . . . , r.

Proof. We take arbitrary λ, α and h. The estimates (3.1) and (3.2) together
with the mentioned Gallagher lemma, for 1/2 < σ < 1, implies

N∑
k=0

|L(λ, α, σ + ikh|2 ≪λ,α,h,σ N. (4.1)

Let Kl be a compact set from the definition of the metric ρ. Then (4.1) and
the Cauchy integral formula give

N∑
k=0

sup
s∈Kl

|L(λ, α, s+ ikh)| ≪l,λ,α,h

(
N

N∑
k=0

sup
s∈Kl

|L(λ, α, s+ ikh)|2
)1/2

≪l,λ,α,h N.
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Hence, in view of Lemma 3, we have

sup
n∈N

lim sup
N→∞

1

N + 1

N∑
k=0

sup
s∈Kl

|Ln(λ, α, s+ ikh)| ⩽ sup
n∈N

lim sup
N→∞

1

N + 1

×
N∑

k=0

sup
s∈Kl

|Ln(λ, α, s+ ikh)|+ sup
n∈N

lim sup
N→∞

N∑
k=0

sup
s∈Kl

|L(λ, α, s+ ikh)

− Ln(λ, α, s+ ikh)| ⩽ Rl,λ,α,h < ∞. (4.2)

Let the random variable ξN be defined on a certain probability space (Ω̂,B(Ω̂),
P ) and have the distribution

P{ξN = k} = 1/(N + 1), k = 0, 1, . . . , N.

On the probability space (Ω̂,B(Ω̂), P ), define the Hr(D)-valued random ele-
ments

XN,n,λ,α,h(s) = (XN,n,λ1,α1,h1(s), . . . , XN,n,λr,αr,hr (s)) = Ln(λ, α, s+ iξNh),

Xn,λ,α,h(s) = (Xn,λ1,α1,h1(s), . . . , Xn,λr,αr,hr (s)) ,

which has the distribution P̂n,λ,α,h. Denote by
D−−→ the convergence in distri-

bution. Then in view of Lemma 2,

XN,n,λ,α,h
D−−−−→

N→∞
Xn,λ,α,h. (4.3)

From this, it follows that

XN,n,λ,α,h
D−−−−→

N→∞
Xn,λ,α,h. (4.4)

Let ε > 0 be fixed, and Ml = Ml(λ, α, h, ε) = 2lRl,λ,α,hε
−1, l ∈ N. Then, by

(4.4) and (4.2),

P

{
sup
s∈Kl

|XN,n,λ,α,h(s)| > Ml

}
⩽ sup

n∈N
lim sup
N→∞

P

{
sup
s∈Kl

|XN,n,λ,α,h(s)| > Ml

}

⩽ sup
n∈N

lim sup
N→∞

1

(N + 1)Ml

N∑
k=0

sup
s∈Kl

|Ln(λ, α, s+ ikh)| ⩽ ε

2l
(4.5)

for all n ∈ N and l ∈ N. Define the set

K = Kε =

{
g ∈ H(D) : sup

s∈Kl

|g(s)| ⩽ Ml, l ∈ N
}
,

which is compact in the space H(D). Moreover, (4.5) shows that

P {Xn,λ,α,h ∈ K} > 1−
∞∑
l=1

ε

2l
= 1− ε

for all n ∈ N. This and the definition of Xn,λ,α,h prove the lemma. ⊓⊔

A simple consequence of Lemma 5 is the following

Math. Model. Anal., 29(2):178–192, 2024.
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Lemma 6. The sequence {P̂n,λ,α,h : n ∈ N} is tight for all λ, α and h.

Proof. Let ε > 0 be fixed. Then, in virtue of Lemma 5, there exist compact
sets Kj ∈ H(D) such that

P̂n,λj ,αj ,hj (Kj) > 1− ε/r, j = 1, . . . , r, (4.6)

for all n ∈ N. Setting K = K1 × · · · ×Kr, we have a compact set in Hr(D),
and, by (4.6),

P̂n,λ,α,h (H
r(D) \K) = P̂n,λ,α,h

( r⋃
j=1

(
H(D)× · · · ×H(D)︸ ︷︷ ︸

j−1

)
× (H(D) \Kj)

×H(D)× · · · ×H(D)

)
⩽

r∑
j=1

P̂n,λj ,α,hj
(H(D) \Kj) ⩽

εr

r
= ε,

for all n ∈ N. Therefore, P̂n,λ,α,h(K) > 1 − ε for all n ∈ N. The lemma is
proved. ⊓⊔

Corollary 1. The sequence {P̂n,λ,α,h : n ∈ N} is relatively compact.

Proof. The corollary follows from Lemma 6 and Prokhorov’s theorems, see, for
example, [6], Theorem 6.1, which asserts that every tight family of probability
measures is relatively compact. ⊓⊔

5 Limit theorems

Now we are ready to obtain the weak convergence for PN,λ,α,h as N → ∞.

Theorem 7. Suppose that λ, α and h are arbitrary. Then, on (Hr(D),
B(Hr(D))), there exists a probability measure Pλ,α,h such that PN,λ,α,h con-
verges weakly to Pλ,α,h as N → ∞.

Proof. On the probability space (Hr(D),B(Hr(D),mH), define one more
Hr(D)-valued random element

X̂N,λ,α,h(s) = L(λ, α, s+ iξNh).

Since, by Corollary 1, the sequence {P̂n,λ,α,h} is relatively compact, there exists

a subsequence {P̂nl,λ,α,h} ⊂ {P̂n,λ,α,h} and a probability measure Pλ,α,h on

(Hr(D),B(Hr(D))), such that P̂nl,λ,α,h converges weakly to Pλ,α,h as l → ∞.
This can be written using convergence in distribution as

Xn,λ,α,h
D−−−→

l→∞
Pλ,α,h. (5.1)

Moreover, we find, for ε > 0,

P
{
ρ(XN,n,λ,α,h, X̂N,λ,α,h) ⩾ ε

}
⩽

1

(N + 1)ε

N∑
k=0

ρ (L(λ, α, s+ ikh), Ln(λ, α, s+ ikh)) ,
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thus, by Lemma 4,

lim
n→∞

lim sup
N→∞

P
{
ρ(XN,n,λ,α,h, X̂N,λ,α,h) ⩾ ε

}
= 0.

This and relations (4.3) and (5.1) show that all conditions of Theorem 4.2
from [6] are fulfilled. Therefore, we have

X̂N,λ,α,h
D−−−−→

N→∞
Pλ,α,h,

and this means that PN,λ,α,h converges weakly to the measure Pλ,α,h as N →
∞. ⊓⊔

Theorem 7 implies a limit theorem for some compositions Ψ(L(λ, α, s)). Let
Ψ : Hr(D) → H(D) be a certain operator, and, for A ∈ B(H(D)),

PN,Ψ,λ,α,h(A) =
1

N + 1
# {0 ⩽ k ⩽ N : Ψ(L(λ, α, s+ ikh)) ∈ A} .

Theorem 8. Suppose that Ψ is a continuous operator, and Pλ,α,h is a limit
measure in Theorem 7. Then, for arbitrary λ, α, and h, PN,Ψ,λ,α,h converges
weakly to the measure Pλ,α,hΨ

−1 as N → ∞.

Proof. From the definitions of PN,λ,α,h and PN,Ψ,λ,α,h, we have

PN,Ψ,λ,α,h = PN,λ,α,hΨ
−1.

Since Ψ is continuous, using a property of preservation of weak convergence
under continuous mappings, see, Theorem 5.1 of [6], and Theorem 7, we obtain
that PN,Ψ,λ,α,h converges weakly to the measure Pλ,α,hΨ

−1 as N → ∞. ⊓⊔

6 Proof of approximation

Let P be a probability measure on (X,B(X)), and the space X is separable.
We recall that the support of P is a minimal closed set SP ⊂ X such that
P (SP ) = 1. The set SP consists of all elements x ∈ X, for which arbitrary
open neighbourhood Gx, the inequality P (Gx) > 0 holds.

Proof. (Proof of Theorem 5). Case of lower density. Denote by Fλ,α,h the
support of the measure Pλ,α,h in Theorem 7. Thus, Pλ,α,h(Fλ,α,h) = 1. There-
fore, Fλ,α,h ̸= ∅ and Fλ,α,h is a closed set. The set

G(ε) =
{
(g1, . . . , gr) ∈ Hr(D) : sup

1⩽j⩽r
sup
s∈Kj

|gj(s)− fj(s)| < ε
}

is an open neighbourhood of (f1, . . . , fr) ∈ Fλ,α,h. Hence,

Pλ,α,h(G(ε)) > 0. (6.1)

Math. Model. Anal., 29(2):178–192, 2024.
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Thus, Theorem7 and the equivalent of weak convergence of probability mea-
sures in terms of open sets, see, Theorem 2.1 of [6], imply

lim inf
N→∞

PN,λ,α,h(G(ε)) ⩾ Pλ,α,h(G(ε)) > 0.

This and the definitions of PN,λ,α,h and G(ε) prove the first part of the theorem.
Case of density. We observe that the boundaries of the sets G(ε) with

different ε do not intersect. Therefore, the set G(ε) is a continuity set of the
measure Pλ,α,h for all but at most countably many ε > 0. Thus, Theorem 7,
and the equivalence of weak convergence of probability measures in terms of
continuity sets [6] and (6.1) show that the limit

lim
N→∞

PN,λ,α,h(G(ε)) = Pλ,α,h(G(ε))

exists and is positive for all but at most countably many ε > 0. This and
definitions of PN,λ,α,h and G(ε) prove the second part of the theorem. ⊓⊔

Proof. (Proof of Theorem 6). We start with the support of the measure
Pλ,α,hΨ

−1. First we will show that the preimage Ψ−1{p} of a polynomial in
the condition (Ψ−1{p})∩Fλ,α,h ̸= ∅ can be replaced by a preimage Ψ−1(G) of
an arbitrary open set ∅ ̸= G ⊂ H(D). Let g ∈ G. By the Mergelyan theorem
on approximation of analytic functions by polynomials, see [24], there exists a
polynomial p(s) such that

sup
s∈K

|g(s)− p(s)| < δ

for every set K ∈ K. From this and the definition of the metric ρ, it follows
that ρ(g, p) < 2δ. Thus, if δ > 0 is sufficiently small, the polynomial p(s) ∈ G.
Since (Ψ−1{p}) ∩ Fλ,α,h ̸= ∅, this implies that also (Ψ−1G) ∩ Fλ,α,h ̸= ∅.

Now, let g ∈ Ψ(Fλ,α,h) be an arbitrary element, and G its arbitrary open
neighbourhood. Since Ψ is continuous, the set Ψ−1G is also open, and con-
tains an element of the set Fλ,α,h. Therefore, by a property of the support,
Pλ,α,h(Ψ

−1G) > 0. Hence,

Pλ,α,hΨ
−1(G) = Pλ,α,h(Ψ

−1G) > 0.

Moreover,

Pλ,α,hΨ
−1(Ψ(Fλ,α,h)) = Pλ,α,h(Ψ

−1Ψ(Fλ,α,h) = Pλ,α,h(Fλ,α,h) = 1.

The latter remarks show that the support of the measure Pλ,α,hΨ
−1 is the set

Ψ(Fλ,α,h). From this, it follows that the proof of Theorem 6 runs in the same
lines as that of Theorem 5 by using Theorem 8. ⊓⊔
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