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Abstract. A monotone iterative technique with lower and upper solutions is pre-
sented to identify the regions of existence for the solutions of singular two-point
boundary value problems

y′′(x) +
p′(x)

p(x)
y′(x) = f(x, y(x)), x ∈ [0, b],

y′(0) = 0, Ay(b) +By′(b) = C, A > 0, B ≥ 0, C ≥ 0,

without requiring the monotonicity conditions on f(x, y). Under an additional con-
dition on f(x, y), uniqueness of the solution is also established. These existence and
uniqueness results are constructive and complement the existing results. Four exam-
ples including some engineering problems are given to illustrate the applicability of
the proposed approach.
Keywords: singular boundary value problem, method of lower and upper solutions, exis-

tence and uniqueness, monotone iterative technique.
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1 Introduction

Many axisymmetric problems in science and engineering lead to the nonlinear
elliptic partial differential equations subjected to the mixed boundary condi-
tions. For the steady radial solutions, such problems can be reduced to the
following two-point boundary value problems (BVPs)

y′′(x) +
p′(x)

p(x)
y′(x) = f(x, y(x)), 0 ≤ x ≤ b,

y′(0) = 0, Ay(b) +By′(b) = C, C ≥ 0,

(1.1)
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where A > 0 and B ≥ 0. Without loss of generality, the condition C ≥ 0 is
imposed in this work since the transformation y → −y can be applied when
C < 0. Here, f(x, y) is assumed to be continuous on Q, a subset of the region
[0, b]×R, and may be singular in y. Further, p(x) = xmeg(x) with m ≥ 0, where
g(x) is real and analytic in {x : |x| < r} for some r > b. This implies that
p(x) ∈ C[0, b]∩C1(0, b], p(x) > 0 in (0, b], p(0) = 0 for m > 0, and xp′(x)/p(x)
is nonnegative at x = 0. Similar conditions were given in [26, 27, 28]. Hence,
BVP (1.1) becomes singular at x = 0 if m > 0. Under the above conditions on
p(x) and f(x, y), the boundary condition y′(0) = 0 is appropriate regardless
that the integral of 1/p(x) from 0 to b is bounded or not, see [11,33].

For the case where p(x) = xm and B = 0, the existence and uniqueness
results for this type of problems have been studied under various assump-
tions on f(x, y) [12, 14, 15, 17, 29]. Later works discussing the solvability of a
slight generalization of BVP (1.1) required f(x, y) to be continuous, negative,
and non-decreasing in y for all y > 0 [5] or continuous and positive for all
y ∈ (0, C/A] [6]. The methods used therein mainly depend on the approxima-
tion theory and various fixed point theorems. For more details, see the recent
review article [33] and references therein.

Over the last decades, the method of upper and lower solutions has been
proved to be a powerful tool for constructing the lower and upper boundaries
of a finite and closed region where the solutions to BVPs exist, see [8, 19, 21]
and references therein. By applying this method and fixed-point theorems,
existence and/or uniqueness of the solutions to BVP (1.1) or a slight gen-
eralization of it have been discussed extensively in [13, 20] for p(x) = xm

and in [1, 2, 3, 16, 22, 23, 24, 25, 30]; see also the survey by Agarwal and his
colleagues [4, 33] and references therein. While in [7, 31], this method with
monotone iterative technique has been applied to establish such results for
p(x) = xm and B = 0. This idea was also used by Pandey and his cowork-
ers [26, 27, 28] to establish the existence-uniqueness results for BVP (1.1). Re-
cently, similar results for such BVPs have been given for p′(x) = 0 in [10]
and for p(x) = xmenx in [9, 32, 34]. In most of these works, the nonlinearity
f(x, y) is assumed to be monotonically increasing or decreasing in y in such
regions [7, 9, 10, 13, 26, 27, 28, 31, 32, 34]. However, only few provided a system-
atic approach for constructing the boundaries of regions containing solutions
to BVP (1.1) with p(x) = xm [13] or p(x) = xmenx [32].

The purpose of this work is to extend and generalize the constructive ap-
proach introduced in [13, 32] to the more general BVP (1.1) by removing the
monotonicity conditions on f(x, y). Different from [13, 32], the existence re-
sults are proved in the region formed by the lower and upper solutions us-
ing the monotone iterative method. The only restrictions are that f(x, y) is
continuous in x ∈ [0, b] and ∂f/∂y is continuous in this region. Additional
sufficient condition on f(x, y) guaranteeing the uniqueness of solution is also
established. These existence and uniqueness results also complement the ex-
isting works of [26, 27, 28]. Four examples including some real life applications
are given to illustrate the theoretical results.
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2 Properties of Green’s function

Consider the following linear homogeneous BVP

Lx[y(x)] ≡y′′(x) +
p′(x)

p(x)
y′(x) + λy(x) = 0, 0 ≤ x ≤ b, (2.1a)

y′(0) =0, Ay(b) +By′(b) = C, (2.1b)

where λ is a real constant and p(x) satisfies the same conditions given in
BVP (1.1). If u(x;λ) and v(x;λ) are two linearly independent solutions of dif-
ferential equation (2.1a) and satisfy u′(0;λ) = 0 and Av(b;λ) + Bv′(b;λ) = 0,
then the Green’s function G(x, s) for BVP (2.1a)–(2.1b) can be expressed as

G(x, s) =
1

W (s;λ)

{
u(x;λ)v(s;λ), 0 ≤ x ≤ s ≤ b,

u(s;λ)v(x;λ), 0 ≤ s ≤ x ≤ b,
(2.2)

where W (s;λ) is the Wronskian defined by

W (s;λ) = v(s;λ)u′(s;λ)− u(s;λ)v′(s;λ) =
p(b)

p(s)
W (b;λ),

such that Lx[G(x, s)] = −δ(x − s). Here δ(x) is the Dirac delta function.
Note that p(s)W (s;λ) is a non-zero constant for all s ∈ [0, b] since u(x;λ) and
v(x;λ) are linearly independent. Moreover, from W (b;λ) = v(b;λ)u′(b;λ) −
u(b;λ)v′(b;λ) and Av(b;λ) +Bv′(b;λ) = 0, it follows that

v(b;λ) =
BW (b;λ)

Au(b;λ) +Bu′(b;λ)
, (2.3a)

v′(b;λ) =− AW (b;λ)

Au(b;λ) +Bu′(b;λ)
. (2.3b)

The sign-preserving property of Green’s function for boundary value prob-
lems plays an important role in monotone iterative method. Pandey and his
coworkers [26,27] have proved this property for BVP (2.1a)–(2.1b) using eigen-
function expansion. Here, a totally different approach is used to prove such a
property as shown below.

Lemma 1. If u(x;λ) satisfies the differential equation (2.1a) with u′(0;λ) = 0,
then u(x;λ) > 0 and Au(b;λ) + Bu′(b;λ) > 0 for all x ∈ [0, b] provided A >
0, B ≥ 0, and λ < λ1, where λ1 is positive and the first zero of Au(b;λ) +
Bu′(b;λ).

Proof. First, we will prove that u(x;λ) > 0 for all x ∈ [0, b] if λ < λ1. As
shown in [27], u(0;λ) ≥ 0 for any real λ. This, combined with the fact that
u′(0;λ) = 0 and all nontrivial solutions of Lx[u(x)] = 0 have only simple zeros
in [0, b] [18, p. 212], gives u(0;λ) > 0 for any real λ. When λ = 0, it is easy
to show that u(x; 0) is constant on [0, b] and then set without loss of generality
that u(x; 0) = 1 since u(0;λ) > 0. For λ < 0, it follows from u(0;λ) > 0,
u′(0;λ) = 0, and equation (2.1a) that u′′(0;λ) > 0. Suppose that u(c;λ) ≤ 0 for
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some point c ∈ (0, b]. As u(x;λ) ∈ C1[0, b] and u′′(0;λ) > 0, there exists a point
d ∈ (0, b] such that u(d;λ) > 0, u′(d;λ) = 0, and u′′(d;λ) < 0, which violates
the differential equation (2.1a) at the point d. Hence, u(x;λ) > 0 on [0, b] for
λ < 0. For 0 < λ < λ1, u(x;λ) does not change sign in x ∈ [0, b] [26, 27]. This
and u(0;λ) > 0 require u(x;λ) > 0 on [0, b] if 0 < λ < λ1. Hence, u(x;λ) > 0
on [0, b] for λ < λ1.

Next, we show that Au(b;λ) + Bu′(b;λ) > 0 if λ < λ1. As shown above,
u(x; 0) = 1 on [0, b], which implies that Au(b; 0) + Bu′(b; 0) > 0. Assume
Au(b;λ0) + Bu′(b;λ0) ≤ 0 for some λ0 < λ1. Since Au(b;λ) + Bu′(b;λ) is an
analytical function of λ, so there exists a constant λ̄ in [λ0, 0) if λ0 < 0 or
(0, λ0] if λ0 > 0 such that Au(b; λ̄) + Bu′(b; λ̄) = 0. This implies that λ̄ < λ1

is the first zero of Au(b;λ) + Bu′(b;λ), which is a contradiction. Therefore,
Au(b;λ) +Bu′(b;λ) > 0 for λ < λ1 and this completes the proof. ⊓⊔

Lemma 2. For all x, s ∈ [0, b], A > 0, B ≥ 0, and λ < λ1, the Green’s function
G(x, s) is always non-negative, i.e., G(x, s) ≥ 0.

Proof. If W (x;λ) > 0 for all x ∈ [0, b], then W (b;λ) > 0. It follows from
B ≥ 0, Equation (2.3a), and Lemma 1 that v(b;λ) ≥ 0 for λ < λ1. Assume
v(c;λ) < 0 for some c ∈ [0, b), then there exist a point d in (c, b) such that
v(d;λ) = 0 and v(x;λ) < 0 for all x ∈ [c, d). Since v(x;λ) ∈ C1[0, b], then we
have

v′(d;λ) = lim
h→0

v(d;λ)− v(d− h;λ)

h
≥ 0.

This together with v(d;λ) = 0 and u(d;λ) > 0 leads toW (d;λ) = v(d;λ)u′(d;λ)−
u(d;λ)v′(d;λ) ≤ 0, which is impossible since W (d;λ) > 0. Thus, v(x;λ) ≥ 0
for λ < λ1. Following the similar analysis, we can show that v(x;λ) ≤ 0 if
W (x;λ) < 0 for all x ∈ [0, b] and λ < λ1. Therefore, W (x;λ)v(x;λ) ≥ 0 and it
follows from Equation (2.2) and Lemma 1 that G(x, s) ≥ 0 for 0 ≤ x, s ≤ b if
λ < λ1. ⊓⊔

Lemma 3. For all x, s ∈ [0, b], A > 0, and B ≥ 0, the Green’s function G(x, s)
satisfies the following inequality

1 + λ

∫ b

0

G(x, s)ds > 0,

for λ < λ1.

Proof. Since u(x;λ) and v(x;λ) satisfy the differential equation (2.1a), it fol-
lows that

λp(x)u(x;λ) = − d

dx
(p(x)u′(x;λ)) , λp(x)v(x;λ) = − d

dx
(p(x)v′(x;λ)) ,

which implies that

λu(x;λ)

W (x;λ)
= − d

dx

(
u′(x;λ)

W (x;λ)

)
,

λv(x;λ)

W (x;λ)
= − d

dx

(
v′(x;λ)

W (x;λ)

)
.
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This leads to

λ

∫ b

0

G(x, s)ds =

∫ x

0

λv(x;λ)u(s;λ)

W (s;λ)
ds+

∫ b

x

λu(x;λ)v(s;λ)

W (s;λ)
ds

= −1− u(x;λ)v′(b;λ)

W (b;λ)
=

Au(x;λ)

Au(b;λ) +Bu′(b;λ)
− 1,

using Equation (2.3b). Since A > 0, it follows from Lemma 1 that for λ < λ1

1 + λ

∫ b

0

G(x, s)ds =
Au(x;λ)

Au(b;λ) +Bu′(b;λ)
> 0.

⊓⊔

3 Region of existence and uniqueness

Since G(x, s) is the Green’s function associated with BVP (2.1a)–(2.1b) and
u(x;λ) and v(x;λ) are two linearly independent solutions of differential equa-
tion (2.1a) and satisfy u′(0;λ) = 0 and Av(b;λ)+Bv′(b;λ) = 0, the next lemma
follows from the analysis given in [34], Lemma 1, and Lemma 2.

Lemma 4. The boundary value problem

Lx[y(x)] = h(x), y′(0) = 0, Ay(b) +By′(b) = C,

where 0 ≤ x ≤ b, A > 0, B ≥ 0, C ≥ 0, and h(x) ∈ C[0, b], has a unique solution
given by

y(x) =
Cu(x;λ)

Au(b;λ) +Bu′(b;λ)
−
∫ b

0

G(x, s)h(s)ds,

provided λ is none of the zeros of Au(b;λ) +Bu′(b;λ). Furthermore, y(x) ≥ 0
if h(x) ≤ 0 and λ < λ1.

Let there exist a lower function v0(x) and an upper solution u0(x) in C2[0, b]
for BVP (1.1), respectively, such that v0 ≤ u0 and satisfy

v′′0 (x) +
p′(x)

p(x)
v′0(x) = FU (x), 0 ≤ x ≤ b,

v′0(0) = 0, Av0(b) +Bv′0(b) = CL ≤ C,

(3.1)

and

u′′
0(x) +

p′(x)

p(x)
u′
0(x) = FL(x), 0 ≤ x ≤ b,

u′
0(0) = 0, Au0(b) +Bu′

0(b) = CU ≥ C,

(3.2)

where FL(x) and FU (x) are given continuous functions on [0, b]. Now, define a
sequence {un}∞n=0 generated by

Lx[un(x)] =λun−1(x) + f(x, un−1(x)), 0 ≤ x ≤ b,

u′
n(0) =0, Aun(b) +Bu′

n(b) = C,
(3.3)

Math. Model. Anal., 29(4):753–766, 2024.
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for n ≥ 1 with initial iterate u0(x). Similarly, using v0(x) as initial iterate in
the following iteration

Lx[vn(x)] =λvn−1(x) + f(x, vn−1(x)), 0 ≤ x ≤ b,

v′n(0) =0, Avn(b) +Bv′n(b) = C,
(3.4)

for n ≥ 1 leads to another sequence {vn}∞n=0.
In the main theorems that follow, D : [0, b]× [v0(x), u0(x)] is a closed region

formed by the solutions to BVPs (3.1) and (3.2).

Theorem 1. Suppose that BVP (1.1) is well-defined in the region Q and f(x, y)
satisfies the following condition:

(H1) There exist continuous functions FL(x) and FU (x) such that FL(x) ≤
f(x, y) ≤ FU (x) for all (x, y) ∈ Q.

If D ⊆ Q, then every possible solution yp(x) of BVP (1.1) that lies entirely in
Q must lie entirely in D.

Proof. Since (x, yp) ∈ Q, then (H1) gives FL(x) ≤ f(x, yp) ≤ FU (x) in Q.
This, combined with the fact that yp(x) and v0(x) satisfy the BVPs (1.1) and
(3.1), respectively, leads to

(yp − v0)
′′ +

p′(x)

p(x)
(yp − v0)

′ = f(x, yp)− FU (x) ≤ 0,

(yp − v0)
′(0) = 0, A(yp − v0)(b) +B(yp − v0)

′(b) ≥ 0.

Since λ1 > 0, it follows from Lemma 4 with λ = 0 that yp(x) ≥ v0(x) for all
x ∈ [0, b]. Proved in a similar manner is that yp(x) ≤ u0(x) on [0, b]. Hence,
every possible solution yp(x) in Q satisfying (H1) lies entirely in D. ⊓⊔

Theorem 2 [Existence]. Suppose ∂f/∂y is continuous in Q and suppose
f(x, y) satisfies the following conditions:

(H2) There exist continuous functions FL(x) and FU (x) such that FL(x) ≤
f(x, u0(x)) and FU (x) ≥ f(x, v0(x)) for all x ∈ [0, b].

(G1) λ+ max
(x,y)∈D

∂f/∂y ≤ 0.

If D ⊆ Q, then two sequences {un}∞n=0 and {vn}∞n=0 generated by Equa-
tions (3.3) and (3.4) converge monotonically and uniformly to the solutions
of BVP (1.1) in D for λ < λ1.

Proof. Setting n = 0 into Equation (3.3) and subtracting it from Equa-
tion (3.2), we get

Lx[u0(x)− u1(x)] = FL(x)− f(x, u0(x)) ≤ 0,

(u0 − u1)
′(0) = 0, A(u0 − u1)(b) +B(u0 − u1)

′(b) ≥ 0,
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using the condition that FL(x) ≤ f(x, u0(x)) for all x ∈ [0, b] from (H2). Since
λ < λ1, it follows from Lemma 4 that u0 ≥ u1. Now assume that un−1 ≥ un.
From Equation (3.3), mean value theorem, (G1), and un−1 ≥ un, we obtain

Lx[un(x)− un+1(x)] = f(x, un−1)− f(x, un) + λ(un−1 − un)

=

(
λ+

∂f

∂y

∣∣∣∣
y=ȳ

)
(un−1 − un) ≤ 0,

(un − un+1)
′(0) = 0, A(un − un+1)(b) +B(un − un+1)

′(b) = 0,

where ȳ is a suitable value between un−1 and un. Hence, un ≥ un+1 from
Lemma 4 for λ < λ1.

Since u0 ≥ v0, assume that un ≥ v0. From Equations (3.1) and (3.3) with
the mean value theorem, conditions (H2) and (G1), it follows that

Lx[un+1(x)− v0(x)] ≤ f(x, un(x))− FU (x) + λ(un − v0)

≤ f(x, un(x))− f(x, v0(x)) + λ(un − v0) =

(
λ+

∂f

∂y

∣∣∣∣
y=w0

)
(un − v0) ≤ 0,

(un+1 − v0)
′(0) = 0, A(un+1 − v0)(b) +B(un+1 − v0)

′(b) = 0,

where w0 ∈ [v0, un]. Then from Lemma 4, un+1 ≥ v0 since λ < λ1 and hence
we have

u0 ≥ u1 ≥ · · · ≥ un ≥ un+1 ≥ · · · ≥ v0.

By starting with v0 and using analogous arguments, it is easy to prove

v0 ≤ v1 ≤ · · · ≤ vn ≤ vn+1 ≤ · · · ≤ u0.

Since u0 ≥ v0, assume that un ≥ vn. The proof of un+1 ≥ vn+1 follows
similar steps and hence

u0 ≥ u1 ≥ · · · ≥ un ≥ un+1 ≥ · · · ≥ vn+1 ≥ vn ≥ · · · ≥ v1 ≥ v0.

This implies that both sequences {un}∞n=0 and {vn}∞n=0 are monotonically non-
increasing and non-decreasing, respectively, and are bounded by u0 and v0.
Therefore by the Dini’s theorem, they converge uniformly to u(x) and v(x),
respectively, as n → ∞.

The solution to BVP (3.3) can be written as

un(x) =
Cu(x;λ)

Au(b;λ) +Bu′(b;λ)
−
∫ b

0

G(x, s) [f(s, un−1(s)) + λun−1(s)] ds.

Then using Lebesgue dominated convergence theorem and taking limit as n →
∞ in the above equation, we get

u(x) =
Cu(x;λ)

Au(b;λ) +Bu′(b;λ)
−
∫ b

0

G(x, s) [f(s, u(s)) + λu(s)] ds,

Math. Model. Anal., 29(4):753–766, 2024.
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which is a solution to the following BVP

Lx[y(x)] =f(x, y(x)) + λy(x), 0 ≤ x ≤ b,

y′(0) =0, Ay(b) +By′(b) = C,

where A > 0, B ≥ 0, C ≥ 0, and therefore BVP (1.1) since they are equivalent.
Similarly, v(x) is also a solution to BVP (1.1). ⊓⊔

Theorem 3 [Existence]. Suppose ∂f/∂y is continuous and non-positive for
all (x, y) ∈ Q. If D ⊆ Q and (H2) holds, then, BVP (1.1) has at least one
solution in D with λ = 0.

Proof. Since λ = 0, λ1 > 0, D ⊆ Q, and ∂f/∂y ≤ 0 for all (x, y) ∈ Q, then
(G1) holds and λ < λ1. Hence, all the conditions required by Theorem 2 are
satisfied and thereby completing the proof. ⊓⊔

Theorem 4 [Existence]. Suppose ∂f/∂y is continuous and non-negative for
all (x, y) ∈ Q. In addition, suppose f(x, y) satisfies (G1) and

(H3) There exist continuous functions ys(x), FL(x) and FU (x) such that FL(x) ≤
f(x, ys(x)) ≤ FU (x) for all x ∈ [0, b].

If (x, ys) ∈ D ⊆ Q, then BVP (1.1) has at least one solution in D for λ < λ1.

Proof. Since (x, ys) ∈ D ⊆ Q and ∂f/∂y ≥ 0 for all (x, y) ∈ Q, then (H3)
give (H2). This and (G1) are the conditions required by Theorem 3 and hence
the result follows. ⊓⊔

For proving the uniqueness, we need the following lemma which can be
easily proved using the analysis similar to Theorem 6 in [7].

Lemma 5. If y(x) satisfies

y′′(x) +
p′(x)

p(x)
y′(x) + k(x)y(x) ≤ 0, 0 ≤ x ≤ b,

y′(0) = 0, Ay(b) +By′(b) ≥ 0,

where A > 0, B ≥ 0 and p(x) satisfies the same conditions given in BVP (1.1),
then, y(x) ≥ 0 for all x ∈ [0, b] provided k(x) < λ1.

Theorem 5 [Uniqueness]. Suppose that all the conditions of Theorem 2 or
3 hold. Then, BVP (1.1) has a unique solution in D if f(x, y) satisfies the
following condition:

(G2) min
(x,y)∈D

∂f/∂y > −λ1.

Proof. Let u(x) and v(x) be any two solutions to BVP (1.1) in D, then we
get

(u(x)− v(x))′′ +
p′(x)

p(x)
(u(x)− v(x))′ − ∂f

∂y

∣∣∣∣
y=ȳ

(u(x)− v(x)) = 0,

(u(x)− v(x))′(0) = 0, A(u(x)− v(x))(b) +B(u(x)− v(x))′(b) = 0,
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by using the mean value theorem. By (G2), we find − ∂f/∂y|y=ȳ < λ1 since
(x, ȳ) ∈ D. From Lemma 5, it follows that u(x) ≥ v(x). Similarly, v(x) ≥ u(x).
Hence u(x) ≡ v(x). ⊓⊔

Since λ1 > 0, then (G2) holds if ∂f/∂y ≥ 0 for all (x, y) ∈ D. By Theo-
rem 5, we immediately deduce

Corollary 1. [Uniqueness] Suppose that all the conditions of Theorem 2 or 4
are satisfied. Then, BVP (1.1) has a unique solution in D if ∂f/∂y ≥ 0 for all
(x, y) ∈ D.

The key point in applying the above theorems and corollaries is to find the
region Q in which the solution to BVP (1.1) may exist. For the case p(x) = xm

and λ < 0, Ford and Pennline [13] have presented a theorem which can be
applied to find the regions where the solutions to BVP (1.1) cannot exist.
Recently, Shivanian [32] extended this theorem to the case p(x) = xmenx and
λ < 0. The following theorem shows that their results remain valid for more
general BVP (1.1).

Theorem 6. Let y(x) ∈ [ymin, ymax] be a continuous solution to BVP (1.1)
for x ∈ [0, b], where ymin and ymax are its minimum and maximum values,
respectively. Suppose that ∂f/∂y is bounded for x ∈ [0, b] and yC = C/A.
Then, for all x ∈ [0, b] and λ < λ1, ymax ≤ yC if f(x, ymax) ≥ 0 and ymin ≥ yC
if f(x, ymin) ≤ 0.

Proof. Since the solution to BVP (1.1) can be expressed as

y(x) =
Cu(x;λ)

Au(b;λ) +Bu′(b;λ)
−
∫ b

0

G(x, s) [f(s, y(s)) + λy(s)] ds,

and yC also satisfies

yC =
Cu(x;λ)

Au(b;λ) +Bu′(b;λ)
−
∫ b

0

G(x, s) (λyC) ds,

provided λ is none of the zeros of Au(b;λ) + Bu′(b;λ), then subtracting each
other yields

y(x)− yC =

∫ b

0

G(x, s) [λyC − λy(s)− f(s, y(s))] ds.

If f(x, ymax) ≥ 0, then following the discussion similar to Theorem 5.4 of [13],
we find

yC − ymax ≥ λ (ymax − yC)

∫ b

0

G(x, s)ds.

This together with Lemma 3 implies that ymax ≤ yC for λ < λ1. A similar
argument can prove that ymin ≥ yC if f(x, ymin) ≤ 0 and λ < λ1. ⊓⊔
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4 Applications

In this section, four nonlinear singular two-point BVPs are given to illustrate
how to construct the lower and upper boundaries of closed regions where their
solutions exist by applying the theorems and corollaries mentioned above.

Example 1. The nonlinear singular two-point boundary value problem

y′′ + y′ +
1

x
y′ = ey − 1,

y′(0) = 0, y(1) + y′(1) = 1,

has only one solution in D : [0, 1]× [0, 1].

Obviously, f(x, y) = ey − 1 ≥ (≤)0 for y ≥ (≤)0 and all x, and C/A = 1.
Theorem 6 requires that no solution can have a maximum value in (1,∞) and
minimum value in (−∞, 0). Any solution, therefore, must lie inQ : [0, 1]×[0, 1].
Using FL(x) = FU (x) = 0 with CL = 0 and CU = 1, the solutions to BVPs (3.1)
and (3.2) are v0(x) = 0 and u0(x) = 1. This forms a region D : [0, 1] × [0, 1]
and implies that the inequalities FU (x) ≥ f(x, v0(x)) and FL(x) ≤ f(x, u0(x))
are satisfied on [0, 1]. Since D = Q and 0 < ∂f/∂y ≤ e in such a region, it
follows from Theorem 2 and Corollary 1 that the limit function of the sequence
generated by Equation (3.3) or (3.4) with λ ≤ −e is the unique positive solution
to BVP(E1) in D and hence the only one.

Example 2. The nonlinear singular two-point boundary value problem

y′′ +
1

x
y′ =

1

y
,

y′(0) = 0, y(1) = 1,

has a unique positive solution in D : [0, 1]× [v0(x), u0(x)], where

v0(x) =
1 + x2

2
, u0(x) =

3 + x2

4
.

For the region above the singularity, i.e., y > 0 and all x, f(x, y) = 1/y is
positive while below the singularity, it is negative. Since C/A = 1, it follows
from Theorem 6 that all solutions must lie in Q : [0, 1]× (0, 1]. In Q, f(x, y) ≥
1, which implies that FL(x) = 1. This with the choice CU = 1 leads to
u0(x) = (3 + x2)/4 as the solution to BVP (3.2). Since u0(x) ≤ 1 on [0, 1],
the condition FL(x) ≤ f(x, u0(x)) is trivially satisfied on [0, 1]. Let FU (x) = 2
and CL = 1, then, the solution to BVP (3.1) is v0(x) = (1 + x2)/2. Another
condition FU (x) ≥ f(x, v0(x)) is also satisfied and 0 < v0(x) ≤ u0(x) on [0, 1].
Thus, the region D : [0, 1]× [v0(x), u0(x)] ⊂ Q is obtained. Furthermore, in D,
∂f/∂y < 0 and its minimum value is −4, which is larger than −λ1 = −5.781 [7].
Therefore, Theorems 3 and 5 prove that a unique solution to BVP(E2) exists
in D and is given by the limit of the sequence (3.3) or (3.4) with λ = 0.
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Example 3. The electric potential distribution in electric double layer

y′′ +
a

x
y′ = α sinh(y), α > 0,

y′(0) = 0, y(1) = C, C > 0,

where a is 0 or 1, has a unique positive solution in D : [0, 1]× [0, C].

Clearly, f(x, y) ≥ (≤)0 for y ≥ (≤)0 and x ∈ [0, 1], and C/A = C. By The-
orem 6, any solution must lie in Q : [0, 1]× [0, C]. Since ∂f/∂y > 0 everywhere
and f(x, 0) = 0, the condition FL(x) ≤ f(x, ys) ≤ FU (x) in Theorem 4 holds
with ys = FL(x) = FU (x) = 0. Taking CL = 0 and CU = C, the resulting so-
lutions to BVPs (3.1) and (3.2) are v0(x) = 0 and u0(x) = C, respectively, and
forms a region D : [0, 1]× [0, C]. Obviously, D coincides with Q and contains
(x, ys) for x ∈ [0, 1]. By Theorem 4 and Corollary 1, BVP(E3) has only one
solution given by the limit function of the sequence generated by Equation (3.3)
or (3.4) with λ ≤ −α cosh(C) and this unique solution exists in D.

Example 4. The reactant concentration in a chemical reactor

y′′ +
a

x
y′ = αyn exp

(
γβ(1− y)

1 + β(1− y)

)
, n ≥ 1, α, β, γ > 0,

y′(0) = 0, y(1) +
1

Nu
y′(1) = 1, Nu > 0,

where a is 0, 1, or 2, and Nu is the Nusselt number, has at least one positive
solution in D1 : [0, 1]× [v0(x), 1], where

v0(x) = 1 +M
x2 − 1− 2

Nu

2(a+ 2)
, (4.1)

if βγ ≥ n and M(2 +Nu) ≤ 2(1 + a)Nu.

Ford and Pennline [13] have found that any positive solution to this problem
must lie in Q : [0, 1]× [0, 1] and such a solution is unique if βγ < n. If βγ ≥ n,
then ∂f(x, y)/∂y is positive for y ∈ [0, y1), but negative for y ∈ (y1, 1], where

y1 =
2β2 + 2β + βγ

n −
√

βγ
n (4β2 + 4β + βγ

n )

2β2
,

such that ∂f(x, y)/∂y = 0 at y = y1. In Q, 0 ≤ f(x, y) ≤ M , where

M = αyn1 exp

(
γβ(1− y1)

1 + β(1− y1)

)
.

Choosing FL(x) = 0, FU (x) = M , and CU = CL = 1 in the BVPs (3.1)
and (3.2) yield v0(x) given by Equation (4.1) and u0(x) = 1. Hence, the
conditions in Theorems 1 and 2 are trivially satisfied if v0(x) ≥ 0. This holds
and D : [0, 1]× [v0(x), 1] ⊂ Q if M(2 +Nu) ≤ 2(1 + a)Nu. Since ∂f(x, y)/∂y
is continuous in D, it has a maximum L. Therefore, for βγ ≥ n, BVP(E4) has
at least one positive solution given by the limit of the sequence (3.3) or (3.4)
with λ+ L ≤ 0 in D ⊂ Q if the condition M(2 +Nu) ≤ 2(1 + a)Nu holds.

Math. Model. Anal., 29(4):753–766, 2024.
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5 Conclusions

A constructive and systematic approach for identifying the regions of existence
and uniqueness for the solutions of singular nonlinear two-point boundary value
problems has been presented. This existence result is proved using the mono-
tone iterative method with lower and upper solutions, and non-negativity of
Green’s function without monotonicity conditions on f(x, y). The only restric-
tions are that f(x, y) is continuous in x ∈ [0, b] and ∂f/∂y is continuous in these
regions. Additional sufficient condition that ensures uniqueness of solution is
also established. Theoretical methods are illustrated on four singular nonlinear
problems and complement previous known results.
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