Share:


Nitrogen sequestration during sewage sludge composting and vermicomposting

    Aušra Zigmontienė Affiliation
    ; Vaida Šerevičienė   Affiliation

Abstract

Composting is the oldest and most natural form of organic material recycling. Technological parameters are very important because when the process is unbalanced, other gases are produced, some of which have objectionable odours (NH3). Sewage sludge is a valuable material that has accumulated large amounts of nitrogen and phosphorus, which can contribute to improving soil quality. Optimal composting and vermicomposting conditions (C/N ratio, pH, and moisture) can reduce the emissions of gaseous pollutants in the environment. Experimental studies have shown that the volume of ammonia emitted into the environment during vermicomposting of sewage sludge is significantly lower (3 mg/m3 concentration was reached on the 28th day) than that resulting from traditional composting (3 mg/m3 concentration was reached on the 56th day). Vermicomposting of sewage sludge preserves higher amounts of total nitrogen (12.52 mg/kg) compared to traditional composting (10.35 mg/kg).

Keyword : sewage sludge treatment, composting, vermicomposting, earthworm, Kjeldahl nitrogen, C/N ratio, ammonia

How to Cite
Zigmontienė, A., & Šerevičienė, V. (2023). Nitrogen sequestration during sewage sludge composting and vermicomposting. Journal of Environmental Engineering and Landscape Management, 31(2), 157–163. https://doi.org/10.3846/jeelm.2023.19298
Published in Issue
Jun 7, 2023
Abstract Views
483
PDF Downloads
376
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Alidadi, H., Hosseinzadeh, A., Najafpoor, A. A., Esmaili, H., Zanganeh, J., Takabi, M. D., & Piranloo, F. G. (2016). Waste recycling by vermicomposting: Maturity and quality assessment via dehydrogenase enzyme activity, lignin, water soluble carbon, nitrogen, phosphorous and other indicators. Journal of Environmental Management, 182, 134–140. https://doi.org/10.1016/j.jenvman.2016.07.025

Awasthi, M. K., Wang, Q., Huang, H., Ren, X., Lahori, A. H., Mahar, A., Ali, A., Shen, F., Li, R., & Zhang, Z. (2016). Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting. Bioresource Technology, 216, 172–181. https://doi.org/10.1016/j.biortech.2016.05.065

Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S., & Thami Alami, I. (2018). Composting parameters and compost quality: A literature review. Organic Agriculture, 8, 141–158. https://doi.org/10.1007/s13165-017-0180-z

Cáceres, R., Coromina, N., Malińska, K., & Marfà, O. (2015). Evolution of process control parameters during extended co-composting of green waste and solid fraction of cattle slurry to obtain growing media. Bioresource Technology, 179, 398–406. https://doi.org/10.1016/j.biortech.2014.12.051

Frederickson, J., Howell, G., & Hobson, A. M. (2007). Effect of pre-composting and vermicomposting on compost characteristics. European Journal of Soil Biology, 43, 320–326. https://doi.org/10.1016/j.ejsobi.2007.08.032

Gupta, R., & Garg, V. K. (2008). Stabilization of primary sewage sludge during vermicomposting. Journal of Hazardous Materials, 153(3), 1023–1030. https://doi.org/10.1016/j.jhazmat.2007.09.055

Hait, S., & Tare, V. (2011). Optimizing vermistabilization of waste activated sludge using vermicompost as bulking material. Waste Management, 31(3), 502–511. https://doi.org/10.1016/j.wasman.2010.11.004

Hanc, A., & Chadimova, Z. (2014). Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresource Technology, 168, 240–244. https://doi.org/10.1016/j.biortech.2014.02.031

Haug, R. T. (1993). The practical handbook of compost engineering. Lewis Publishers.

Henze, M., Harremoes, P., La Cour Jansen, J., & Arvin, E. (2001). Wastewater treatment biological and chemical processes. Springer. https://doi.org/10.1007/978-3-662-04806-1

Huang, G. F., Wong, J. W. C., Wu, Q. T., & Nagar, B. B. (2004). Effect of C/N on composting of pig manure with sawdust. Waste Management, 24(8), 805–813. https://doi.org/10.1016/j.wasman.2004.03.011

Komakech, A. J., Zurbrügg, C., Miito, G. J., Wanyama, J., & Vinnerås, B. (2016). Environmental impact from vermicomposting of organic waste in Kampala, Uganda. Journal of Environmental Management, 181, 395–402. https://doi.org/10.1016/j.jenvman.2016.06.028

Kulikowska, D., & Gusiatin, Z. M. (2015). Sewage sludge composting in a two-stage system: Carbon and nitrogen transformations and potential ecological risk assessment. Waste Management, 38, 312–320. https://doi.org/10.1016/j.wasman.2014.12.019

Li, Z., Lu, H., Ren, L., & He, L. (2013). Experimental and modeling approaches for food waste composting: A review. Chemosphere, 93(7), 1247–1257. https://doi.org/10.1016/j.chemosphere.2013.06.064

Ludibeth, S.-M., Marina, I.-E., & Vicenta, E. M. (2012). Vermicomposting of sewage sludge: Earthworm population and agronomic advantages. Compost Science & Utilization, 20(1), 11–17. https://doi.org/10.1080/1065657X.2012.10737016

Manaf, L. A., Lokman, M., Jusoh, C., Hanida, T., Ismail, T., Hafizan, H. R., & Jusoff, J. K. (2009). Influences of bedding material in vermicomposting process. International Journal of Biology, 1(1), 81–91. https://doi.org/10.5539/ijb.v1n1p81

Mažeikienė, A., & Valentukevičienė, M. (2016). Removal of ammonium ions from digested sludge fugate by using natural zeolite. Journal of Environmental Engineering and Landscape Management, 24(3), 176–184. https://doi.org/10.3846/16486897.2016.1172075

Munroe, G. (2007). Manual of on-farm vermicomposting and vermiculture. Organic Agriculture Centre of Canada.

Nguyen, V.-T., Le, T.-H., Bui, X.-T., Nguyen, T.-N., Vo, T.-D.-H., Lin, C., Vu, T.-M.-H., Nguyen, H.-H., Nguyen, D.-D., Senoro, D. B., & Dang, B.-T. (2020). Effects of C/N ratios and turning frequencies on the composting process of food waste and dry leaves. Bioresource Technology Reports, 11, 100527. https://doi.org/10.1016/j.biteb.2020.100527

Nigussie, A., Kuyper, T. W., Bruun, S., & de Neergaard, A. (2016). Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. Journal of Cleaner Production, 139, 429–439. https://doi.org/10.1016/j.jclepro.2016.08.058

Rodríguez-Quiroz, G., Valenzuela-Quiñónez, W., & Nava-Pérez, E. (2011). Vermicomposting as a nitrogen source in germinating kidney bean in trays. Journal of Plant Nutrition, 34(10), 1418–1423. https://doi.org/10.1080/01904167.2011.585200

Rynk, R., van de Kamp, M., Willson, G. B., Singley, M. E., Richard, T. L., Kolega, J. J., Gouin, F. R., Laliberty, L., Kay, D., Murphy, D. W., Hoitink, H. A. J., & Brinton, W. F. (1992). On-farm composting handbook. Northeast Regional Agricutural Engineering Service.

Sharma, K., & Garg, V. K. (2018). Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresource Technology, 250, 708–715. https://doi.org/10.1016/j.biortech.2017.11.101

Shaymaa, M., Ahmed, H., Norli, I., Morad, N., & Hakimi, I. M. (2010). Removal of aluminium, lead and nickel from industrial sludge via vermicomposting process. World Applied Sciences Journal, 10(11), 1296–1305.

Suthar, S., & Singh, S. (2008). Feasibility of vermicomposting in biostabilization of sludge from a distillery industry. Science of the Total Environment, 394(2–3), 237–243. https://doi.org/10.1016/j.scitotenv.2008.02.005

Van Fan, Y., Lee, C. T., Klemeš, J. J., Bong, C. P. C., & Ho, W. S. (2016). Economic assessment system towards sustainable composting quality in the developing countries. Clean Technologies and Environmental Policy, 18, 2479–2491. https://doi.org/10.1007/s10098-016-1209-9

Varma, V. S., Ramu, K., & Kalamdhad, A. S. (2015). Effects of waste lime sludge on nitrogen dynamics and stability of mixed organic waste using rotary drum composter. International Journal of Environmental Research, 9(1), 395–404. https://doi.org/10.22059/ijer.2015.911

Velasco-Velasco, J., Parkinson, R., & Kuri, V. (2011). Ammonia emissions during vermicomposting of sheep manure. Bioresource Technology, 102(23), 10959–10964. https://doi.org/10.1016/j.biortech.2011.09.047

Zou, H., Lu, X., & Li, T. (2014). A novel process for nutrients removal and phosphorus recovery from domestic wastewater by combining BNR with induced crystallization. Journal of Environmental Engineering and Landscape Management, 22(4), 274–283. https://doi.org/10.3846/16486897.2014.931284