Share:


Anaerobic digestion co-substrate of dairy cow manure and tofu cake: focusing on mixing organic ratio

    Sutaryo Sutaryo Affiliation
    ; Retno Adiwinarti Affiliation
    ; Dian Sahrudi Affiliation
    ; Muhammad Misbahul Huda Affiliation
    ; Farhan Hendri Himawan Affiliation
    ; Alastair James Ward Affiliation

Abstract

Anaerobic digestion of dairy cow manure (DCM) is constrained by a low methane production of animal manure. A method to overcome that is by co-digestion DCM and food industry by-product. This study investigated the process performance anaerobic co-digestion of DCM and tofu cake (TC) at different volatile solid (VS) mixing ratios. The treatments were partial substitutions of DCM with TC by 5%, 10%, and 15% (w/w) in reactors T2, T3, and T4 respectively, while T1 was served as control. Co-substrate of DCM and TC gave a positive effect (P < 0.05) on methane production by 24.23, 34.74, and 52.51% respectively for T2, T3, and T4 compared to the control reactor. Low total volatile fatty acids, ammonia nitrogen concentration, stable methane production and neutral pH values of all digested slurries indicate that TC is suitable to increase methane production of DCM up to a DCM/TC ratio of 2.92:1, in terms of VS.

Keyword : biogas, manur, co-digestion, post digestion test, tofu cake, methane

How to Cite
Sutaryo, S., Adiwinarti, R., Sahrudi, D., Huda, M. M., Himawan, F. H., & Ward, A. J. (2022). Anaerobic digestion co-substrate of dairy cow manure and tofu cake: focusing on mixing organic ratio. Journal of Environmental Engineering and Landscape Management, 30(4), 493–499. https://doi.org/10.3846/jeelm.2022.18058
Published in Issue
Dec 5, 2022
Abstract Views
423
PDF Downloads
317
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

American Public Health Association. (1995). Standard methods for examination of water and waste water (19th ed.). APHA.

Angelidaki, I., & Ellegaard, L. (2003). Codigestion of manure and organic wastes in centralized biogas plants. Applied Biochemistry and Biotechnology, 109, 95–105. https://doi.org/10.1385/ABAB:109:1-3:95

Angelidaki, I., Ellegaard, L., & Ahring, B. K. (2003). Applications of the anaerobic digestion process. In B. K. Ahring & T. Scheper (Eds.), Advances in biochemical engineering/biotechnology: Vol. 82. Biomethanation II (pp. 1–33). Springer. https://doi.org/10.1007/3-540-45838-7_1

Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., & Iyyappan, J. (2018). Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renewable and Sustainable Energy Reviews, 90, 570–582. https://doi.org/10.1016/j.rser.2018.03.093

Boe, K., Batsone, D. J., Steyer, J. P., & Angelidaki, I. (2010). State indicators for monitoring the anaerobic digestion process. Water Research, 44(20), 5973–5980. https://doi.org/10.1016/j.watres.2010.07.043

Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 16(3), 1462–1476. https://doi.org/10.1016/j.rser.2011.11.035

Dong, L., Cao, G., Guo, X., Liu, T., Wu, J., & Ren, N. (2019). Efficient biogas production from cattle manure in a plug flow reactor: A large scale long term study. Bioresoure Technology, 278, 450–455. https://doi.org/10.1016/j.biortech.2019.01.100

Gelegenis, J., Georgakakis, D., Angelidaki, I., & Mavris, V. (2007). Optimization of biogas production by co-digesting whey with diluted poultry manure. Renewable Energy, 32(13), 2147–2160. https://doi.org/10.1016/j.renene.2006.11.015

Gomez, K. A., & Gomez, A. A. (2007). Prosedur statistik untuk penelitian pertanian (E. Sjamsuddin & J. S. Baharsjah, Trans.). UI Press.

Guimarães, R. M., Silva, T. E., Lemes, A. C., Boldrin, M. C. F., Pereira da Silva, M. A., Silva, F. G., & Egea, M. B. (2018). Okara: A soybean by-product as an alternative to enrich vegetable paste. LWT-Food Science and Technology, 92, 593–599. https://doi.org/10.1016/j.lwt.2018.02.058

Haug, R. T. (1993). The practical handbook of composting engineering. Lewis Publisher.

Karki, R., Chuenchart, W., Surendra, K. C., Shrestha, S., Raskin, L., Sung, S., Hashimoto, A., & Khanal, S. K. (2021). Anaerobic co-digestion: Current status and perspectives. Bio­resource Technology, 330, 125001. https://doi.org/10.1016/j.biortech.2021.125001

Li, Y., Zhao, J., Krooneman, J., & Euverink, G. J. (2021). Strategies to boost anaerobic digestion performance of cow manure: Laboratory achievements and their full-scale application potential. Science of the Total Environment, 755, 142940. https://doi.org/10.1016/j.scitotenv.2020.142940

Macias-Corral, M. A., Cueto-Wong, J. A., Morán-Martínez, J., & Reynoso-Cuevas, L. (2019). Efect of diferent initial C/N ratio of cow manure and straw on microbial quality of compost. International Journal of Recycling of Organic Waste in Agriculture, 8(Suppl 1), 357–365. https://doi.org/10.1007/s40093-019-00308-5

Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555. https://doi.org/10.1016/j.rser.2015.02.032

Millner, P., Ingram, D., Mulbry, W., & Arikan, O. A. (2014). Pathogen reduction in minimally managed composting of bovine manure. Waste Man-agement, 34(11), 1992–1999. https://doi.org/10.1016/j.wasman.2014.07.021

Ministry of Agriculture of Republic Indonesia. (2021, March 19). Basis data konsumsi konsumen. http://aplikasi2.pertanian.go.id/konsumsi2017/konsumsi/kapita_per_tahun

Misevičius, A., & Baltrėnas, P. (2011). Experimental investigation of biogas production using biodegradable municipal waste. Journal of Environmental Engineering and Landscape Management, 19(2), 167–177. https://doi.org/10.3846/16486897.2011.576456

Møller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Methane productivity of manure, straw and solid fraction of manure. Biomass and Bioenergy, 26(5), 485–495. https://doi.org/10.1016/j.biombioe.2003.08.008

Raju, C. S., Sutaryo, S., Ward, A. J., & Møller, H. B. (2013). Effects of high-temperature isochoric pre-treatment on the methane yields of cattle, pig and chicken manure. Environmental Technology, 34(2), 239–244. https://doi.org/10.1080/09593330.2012.689482

Saputra, F., Sutaryo, S., & Purnomoadi, A. (2018). Pemanfaatan limbah padat industri tahu sebagai co-substrat untuk produksi biogas. Jurnal Aplikasi Teknologi Pangan, 7(3), 117–121. https://doi.org/10.17728/jatp.2315

Siddique, Md. N. I., & Wahid, Z. Ab. (2018). Achievements and perspective of anaerobic co-digestion: A review. Journal of Cleaner Production, 194, 359–371. https://doi.org/10.1016/j.jclepro.2018.05.155

Sutaryo, S., Adiwinarti, R., Sudrajad, M. A., Sari, T. Y. K., Khayati, L. N., Ward, A. J., & Purnomoadi, A. (2021). Enhancing methane production of dairy cow manure by co-digestion with modified cassava flour waste water. Livestock Research for Rural Development, 33(6), 3377. http://www.lrrd.org/lrrd33/6/3377soeta.html

Sutaryo, S., Sempana, A. N., Lestari, C. M. S., & Ward, A. J. (2020). Performance comparison of single and two-phase biogas digesters treating dairy cattle manure at tropical ambient temperature. Tropical Animal Science Journal, 43(4), 354–359. https://doi.org/10.5398/tasj.2020.43.4.354

Sutaryo, S., Ward, A. J., & Møller, H. B. (2012). Thermophilic anaerobic co-digestion of separated solids from acidified dairy cow manure. Biore-source Technology, 114, 195–200. https://doi.org/10.1016/j.biortech.2012.03.041

Sutaryo, S., Ward, A. J., & Møller, H. B. (2014). Ammonia inhibition in thermophilic anaerobic digestion of dairy cattle manure. Journal of Indonesian Tropical Animal Agriculture, 39(2), 83–90. https://doi.org/10.14710/jitaa.39.2.83-90

Wiyono, T., & Baksh, R. (2015). Analysis of income and added value effort fofu of the home industry “wajianto” in ogurandu village bolano lambunu district parigi moutong regency. Jurnal Agrotekbis, 3(3), 421–426. https://123dok.com/document/zlnj0v6q-analisis-pendapatan-industri-wajianto-ogurandu-kecamatan-kabupaten-agrotekbis.html

Wu, D., Li, L., Peng, Y., Yang, P., Peng, X., Sun, Y., & Wang, X. (2021). State indicators of anaerobic digestion: A critical review on process moni-toring and diagnosis. Renewable and Sustainable Energy Reviews, 148, 111260. https://doi.org/10.1016/j.rser.2021.111260

Yenigün, O., & Demirel, B. (2013). Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry, 48(5–6), 901–911. https://doi.org/10.1016/j.procbio.2013.04.012

Zhang, L., Loh, K., Sarvananthrajah, S., Tong, Y. W., Wang, C., & Day, Y. (2019). Mesophilic and thermophilic anaerobic digestion of soybean curd residue for methane production: Characterizing bacterial and methanogen communities and their correlations with organic loading rate and operating temperature. Bioresource Technology, 288, 121597. https://doi.org/10.1016/j.biortech.2019.121597

Zhou, Y., Zhang, Z., Nakamoto, T., Li, Y., Yang, Y., Utsumi, M., & Sugiura, N. (2011). Influence of substrate-to-inoculum ratio on the batch anaerobic digestion of bean curd refuse-okara under mesophilic conditions. Biomass and Bioenergy, 35(7), 3251–3256. https://doi.org/10.1016/j.biombioe.2011.04.002