Share:


GEP prediction of scour around a side weir in curved channel

    Fevzi Onen Affiliation

Abstract

Side-weirs have been widely used in hydraulic and environmental engineering applications. Side-weir is known as a lateral intake structure, which are significant parts of the distribution channel in irrigation, land drainage, and urban sewerage system, by flow diversion device. Local scour involves the removal of material around piers, abutments, side-weir, spurs, and embankments. Clearwater scour depth based on five dimensional parameters: approach flow velocity (V1/Vc), water head ratio (h1–p)/h1, side-weir length (L/r), side-weir crest height (b/p) and angle of bend θ. The aim of this study is to develop a new formulation for prediction of clear-water scour of side-weir intersection along curved channel using Gene Expression Programming (GEP) which is an algorithm based on genetic algorithms (GA) and genetic programming (GP). In addition, the explicit formulations of the developed GEP models are presented. Also equations are obtained using multiple linear regressions (MLR) and multiple nonlinear regressions (MNRL). The performance of GEP is found more influential than multiple linear regression equation for predicting the clearwater scour depth at side-weir intersection along curved channel. Multiple nonlinear regression equation was quite close to GEP, which serve much simpler model with explicit formulation.


First published online: 17 Mar 2014

Keyword : side-weir, clear-water scour, gene expression programming, environmental processes modelling

How to Cite
Onen, F. (2014). GEP prediction of scour around a side weir in curved channel. Journal of Environmental Engineering and Landscape Management, 22(3), 161-170. https://doi.org/10.3846/16486897.2013.865632
Published in Issue
Sep 22, 2014
Abstract Views
558
PDF Downloads
385
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.