Share:


A GIS-AHP based approach for optimization of quarry site location around Harer and Dire-Dawa towns, Eastern Ethiopia

    Leta Gudissa Affiliation
    ; Tarun Kumar Raghuvanshi Affiliation
    ; Matebie Meten Affiliation
    ; Yadeta C. Chemeda Affiliation

Abstract

The problem of environmental degradation and pollution resulting from quarry operations is becoming a critical problem. Therefore, the selection of optimal quarry sites is a prerequisite for safe operation and economic viability. The present study was carried out around Harer and Dire-Dawa towns to identify the optimal location of quarry sites by using an integrated AHP and GIS approaches. The selection was carried out by considering environmental and socio-economic factors. For each of the factors, appropriate classifications and criteria were formulated. Finally, a weighted overlay analysis was applied to produce the preliminary quarry site suitability map. About 136 km2 of the area is highly suitable, 1,587 km2 is moderately suitable, and 2,166 km2 has low suitability for quarry site. The approach followed by the study helped to narrow the area to the suitable sites that may further be studied through detailed field investigation. Hence, it can be adopted elsewhere as a guide for economical quarry site selection.

Keyword : GIS-AHP, quarry site, weighted overlay, suitability, Harer, Dire-Dawa

How to Cite
Gudissa, L., Raghuvanshi, T. K., Meten, M., & Chemeda, Y. C. (2022). A GIS-AHP based approach for optimization of quarry site location around Harer and Dire-Dawa towns, Eastern Ethiopia. Journal of Environmental Engineering and Landscape Management, 30(1), 151-164. https://doi.org/10.3846/jeelm.2022.16280
Published in Issue
Feb 25, 2022
Abstract Views
821
PDF Downloads
621
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Adewumi, J. R., Ejeh, O. J., Lasisi, K. H., & Ajibade, F. O. (2019). A GIS-AHP-based approach in siting MSW landfills in Lokoja, Nigeria. SN Applied Sciences, 1, 1528. https://doi.org/10.1007/s42452-019-1500-6

Akanwa, A. O., Okeke, F. I., Nnodu, V. C., & Iortyom, T. E. (2017). Quarrying and its effect on vegetation cover for a sustainable development using high-resolution satellite image and GIS. Environmental Earth Sciences, 76, 505. https://doi.org/10.1007/s12665-017-6844-x

Alanbari, M. A., Al-Ansari, N., & Jasim, H. K. (2014). GIS and Multicriteria Decision Analysis for landfill site selection in Al-Hashimyah Qadaa. Natural Science, 6(5), 282–304. https://doi.org/10.4236/ns.2014.65032

Alkaradaghi, K., Ali, S. S., Al-Ansari, N., Laue, J., & Chabuk, A. (2019). Landfill site selection using MCDM methods and GIS in the Sulaimaniyah Governorate, Iraq. Sustainability, 11(17), 4530. https://doi.org/10.3390/su11174530

Anbalagan, R. (1992). Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology, 32(4), 269–277. https://doi.org/10.1016/0013-7952(92)90053-2

Ataei, M., Jamshidi, M., Sereshki, F., & Jalali, S. M. E. (2008). Mining method selection by AHP approach. Journal of the Southern African Institute of Mining and Metallurgy, 108(12), 741–749.

Barakat, A., Ouargaf, Z., & Touhami, F. (2016). Identification of potential areas hosting aggregate resources using GIS method: A case study of Tadla-Azilal Region, Morocco. Environmental Earth Sciences, 75, 1–16. https://doi.org/10.1007/s12665-016-5613-6

Bosellini, A., Russo, A., & Assefa, G. (2001). The Mesozoic succession of Dire Dawa, Harar Province, Ethiopia. Journal of African Earth Sciences, 32(3), 403–417. https://doi.org/10.1016/S0899-5362(01)90105-8

British Geological Survey. (2019). Construction aggregates. Mineral Planning Factsheet, 45, 567–568.

Chabuk, A., Al-Ansari, N., Hussain, H. M., Knutsson, S., & Pusch, R. (2016b). Landfill site selection using Geographic Information System (GIS) and AHP: A case study Al-Hillah Qadhaa, Babylon, Iraq. Waste Management & Research, 34(5), 427–437. https://doi.org/10.1177/0734242X16633778

Chabuk, A., Al-Ansari, N., Hussain, H. M., Knutsson, S., & Pusch, R. (2016a). Landfill sitting using GIS and AHP (Analytical Hierarchy Process): A case study Al-Qasim Qadhaa, Babylon, Iraq. Journal of Civil Engineering and Architecture, 10, 530–543. https://doi.org/10.17265/1934-7359/2016.05.002

Chabuk, A., Al-Ansari, N., Hussain, H. M., Knutsson, S., & Pusch, R. (2017). Landfill sites selection using analytical hierarchy process and ratio scale weighting: Case study of Al-Mahawil, Babylon, Iraq. Engineering, 9(2), 123–141. https://doi.org/10.4236/eng.2017.92006

Chabuk, A., Al-Ansari, N., Hussain, H. M., Laue, J., Hazim, A., Knutsson, S., & Pusch, R. (2019). Landfill sites selection using MCDM and comparing method of change detection for Babylon Governorate, Iraq. Environmental Science & Pollution Research, 26, 35325–35339. https://doi.org/10.1007/s11356-019-05064-7

Chimidi, G., Raghuvanshi, T. K., & Suryabhagavan, K. V. (2017). Landslide hazard evaluation and zonation in and around Gimbi town, western Ethiopia – a GIS-based statistical approach. Applied Geomatics, 9, 219–236. https://doi.org/10.1007/s12518-017-0195-x

Darwish, T., Khater, C., Jomaa, I., Stehouwer, R., Shaban, A., & Hamze, M. (2011). Environmental impact of quarries on natural resources in Lebanon. Land Degradation & Development, 22(3), 345–358. https://doi.org/10.1002/ldr.1011

Department of Primary Industry, Earth Resources Regulation branch. (2010). Code of practice for small quarries of Australia (COPSMA). Melbourne, Victoria, Australia.

Dey, P. K., & Ramcharan, E. K. (2008). Analytic hierarchy process helps select site for limestone quarry expansion in Barbados. Journal of Environmental Management, 88(4), 1384–1395. https://doi.org/10.1016/j.jenvman.2007.07.011

Dimopoulou, E., Tolidis, K., Orfanoudakis, Y., & Adam, K. (2013). Spatial multi-criteria decision analysis for site selection of sustainable stone waste disposal. Fresenius Environmental Bulletin, 22(7), 2022–2026.

Ebistu, T. A., & Minale, A. S. (2013). Solid waste dumping site suitability analysis using geographic information system (GIS) and remote sensing for Bahir Dar Town, North Western Ethiopia. African Journal of Environmental Science and Technology, 7(11), 976–989.

Egesi, N., & Nwosu, J. I. (2018). Crushed rocks and dimension stone: Exploration, evaluation, and exploitation in parts of Igarra Area, Southwestern Nigeria. International Journal of Sciences, 7, 10–20. https://doi.org/10.18483/ijSci.1398

Environment Protection Authority, Tasmania. (2017). Quarry code of practice (3rd ed.). EPA Tasmania, Hobart, Tasmania.

Geological Survey of Ethiopia. (2010). Geology of the Harer areas (NC 38/9). Memoir 21. Addis Ababa.

Gilpin, R., Robinson, Jr. A., & Larkins, P. M. (2007). Probabilistic prediction models for aggregate Quarry siting. Natural Resources Research, 16, 135–146. https://doi.org/10.1007/s11053-007-9039-4

Girma, F., Raghuvanshi, T. K., Ayenew, T., & Hailemariam, T. (2015). Landslide hazard zonation in Ada Berga district, central Ethiopia – A GIS based statistical approach. Journal of Geomatics, 9(1), 25–38. https://isgindia.org/JOG/abstracts/April-2015/04_Paper_282.pdf

Haile, G., & Suryabhagavan, K. V. (2019). GIS-based approach for identification of potential rainwater harvesting sites in Arsi Zone, Central Ethiopia. Modeling Earth Systems and Environment, 5, 353–367. https://doi.org/10.1007/s40808-018-0537-7

Jablonsky, J. (2015). Analysis of selected prioritization methods in the analytic hierarchy process. Journal of Physics: Conference Series, 622, 012033. https://doi.org/10.1088/1742-6596/622/1/012033

Ketema, T. (1982). Geological investigations for the construction of drift for a dynamite store in the Dire Dawa area (Note No. 176). Ministry of Mines and Energy, Ethiopian Institute of Geological Surveys.

Khan, D., & Samadder, S. R. (2015). A simplified multi-criteria evaluation model for landfill site ranking and selection based on AHP and GIS. Journal of Environmental Engineering and Landscape Management, 23(4), 267–278. https://doi.org/10.3846/16486897.2015.1056741

Kindiga, S. W. (2017). Environmental and land use impacts of quarrying along Ngong River in Embakasi [MA Thesis]. Nairobi University, Kenya.

Kontos, T. D., Komilis, D. P., & Halvadakis, C. P. (2005). Siting MSW landfills with a spatial multiple criteria analysis methodology. Waste Management, 25(8), 818–832. https://doi.org/10.1016/j.wasman.2005.04.002

Kou, G., Ergu, D., Chen, Y., & Lin, C. (2016). Pairwise comparison matrix in multiple criteria decision making. Technological and Economic Development of Economy, 22(5), 738–765. https://doi.org/10.3846/20294913.2016.1210694

Kumar, P., & Ramcharan, E. K. (2008). Analytic hierarchy process helps select site for limestone quarry expansion in Barbados. Journal of Environmental Management, 88(4), 1384–1395. https://doi.org/10.1016/j.jenvman.2007.07.011

Langer, W. H., & Knepper, J. D. H. (1995). Geologic characterization of natural aggregate: A field geologist’s guide to natural aggregate resource assessment (Open file report 95-582). U.S. Geological Survey. https://doi.org/10.3133/ofr95582

Leroy, M. N. L., Molay, T. G. G., Joseph, N., Colince, F. M., & Bienvenu, N. J. M. (2017). A comparative study of concrete strength using metamorphic, igneous, and sedimentary rocks (crushed gneiss, crushed basalt, alluvial sand) as fine aggregate. Journal of Architectural Engineering Technology, 6, 191. https://doi.org/10.4172/2168-9717.1000191

Mandal, S., & Mondal, S. S. (2016). Analytic Hierarchy Process (AHP) approach for selection of open cast coal mine project. International Journal of Industrial Engineering Research and Development, 7(2), 1–13. https://doi.org/10.34218/IJIERD.7.2.2016.001

Ming’ate, F., & Mohamed, M. (2016). Impact of stone quarrying on the environment and the livelihood of communities in Mandera County, Kenya. Journal of Scientific Research and Reports, 10(5), 1–9. https://doi.org/10.9734/JSRR/2016/24945

Mitchell, C. (2015). Construction aggregates evaluation and specification. British Geological Survey, Nottingham, UK.

Ogbonna, C., Nwafor, F., & Ugbogu, E. A. (2019). Physiochemical properties and anticipated performance of selected plant species in Lokpaukwu Quarry Site in Abia State, Nigeria. Journal of Environment Pollution and Human Health, 7(1), 7–14.

Pal, S., & Mandal, I. (2017). Impacts of Stone mining and crushing on stream characters and vegetation health of Dwarka River Basin of Jharkhand and West Bengal, Eastern India. Journal of Environmental Geography, 10(1–2), 11–21. https://doi.org/10.1515/jengeo-2017-0002

Premasiri, R., Dahanayake, T., & Tennakoon, S. (2016). Development of suitability index for locating rock quarrying sites in Sri Lanka [Conference presentation abstract]. Proceedings of the International Forestry and Environment Symposium, Sri Lanka.

Raghuvanshi, T. K. (2019). Plane failure in rock slopes – A review on stability analysis techniques. Journal of King Saud University – Science, 31(1), 101–109. https://doi.org/10.1016/j.jksus.2017.06.004

Raghuvanshi, T. K., Ibrahim, J., & Ayalew, D. (2014). Slope stability susceptibility evaluation parameter (SSEP) rating scheme – An approach for landslide hazard zonation. Journal of African Earth Sciences, 99(2), 595–612. https://doi.org/10.1016/j.jafrearsci.2014.05.004

Raghuvanshi, T. K., Negassa, L., & Kala, P. M. (2015). GIS-based Grid overlay method versus modeling approach – a comparative study for landslide hazard zonation (LHZ) in Meta Robi District of West Showa Zone in Ethiopia. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 235–250. https://doi.org/10.1016/j.ejrs.2015.08.001

Rajasekhar, M., Sudarsana, R. G., Imran, B. U., Siddi, R. R., Pradeep, K. B., & Ramachandra, M. (2019). Identification of suitable sites for artificial groundwater recharge structures in semi-arid region of Anantapur District: AHP Approach. Hydrospatial Analysis, 3(1), 1–11. https://doi.org/10.21523/gcj3.19030101

Ramík, J. (2017). Ranking alternatives by pairwise comparisons matrix and priority vector. Scientific Annals of Economics and Business, 64, 85–95. https://doi.org/10.1515/saeb-2017-0040

Regassa, B., Raghuvanshi, T. K., & Kebede, S. (2015). Quarry site selection and geotechnical characterization of ballast aggregate for Ambo-Ijaji railway project in Central Ethiopia: An integrated GIS and geotechnical approach. In G. Lollino et al. (Eds.), Engineering geology for society and territory – Volume 6 (pp. 329–335). Springer. https://doi.org/10.1007/978-3-319-09060-3_56

Robinson, G. R., Kapo, K. E., & Raines, G. L. (2004). A GIS analysis to evaluate areas suitable for crushed stone aggregate quarries in New England, USA. Natural Resources Research, 13, 143–159. https://doi.org/10.1023/B:NARR.0000046917.21649.8d

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1, 83–98.

Saha, D. C., & Padhy, P. K. (2011). Effects of stone crushing industry on Shorea robusta and Madhuca indica foliage in Lalpahari forest. Atmospheric Pollution Research, 2(4), 463–476. https://doi.org/10.5094/APR.2011.053

South Pacific Applied Geoscience Commission. (2005). Identification of onshore aggregate quarry sites and prospects for quarry development, pohnpei Island, Federated States of Micronesia (SOPAC Technical Report).

Subhasis, B. S., Giyasuddin, S., & Arindam, R. (2018). Economic importance of stone quarrying in rural livelihood and its impact on environment: A case study of Saltora Block, Bankura, West Bengal. International Journal of Scientific Research and Reviews, 7(3), 1045–1062.

Vaidya, O., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. https://doi.org/10.1016/j.ejor.2004.04.028

Yoxas, G., Samara. T., Sargologou, L., & Stournaras, G. (2011). Multiple criteria analysis for selecting suitable sites for construction of sanitary landfill based on hydrogeological data; Case study of Kea Island (Aegean Sea, Hellas). In N. Lambrakis, G. Stournaras, & K. Katsanou (Eds.), Advances in the research of aquatic environment (Vol. 2, pp. 97–104). https://doi.org/10.1007/978-3-642-24076-8_12

Zaruba, Q., & Mencl, V. (1976). Engineering geology (3rd ed.). Elsevier Scientific Publishing Company.

Zelenović, V. T., Srdjević, Z., Bajčetić, R., & Vojinović Miloradov, M. (2012). GIS and the analytic hierarchy process for regional landfill site selection in transitional countries: A case study from Serbia. Environmental Management, 49, 445–458. https://doi.org/10.1007/s00267-011-9792-3