Share:


A review of multi-criteria decision-making methods for building assessment, selection, and retrofit

    Paola Villalba Affiliation
    ; Antonio J. Sánchez-Garrido Affiliation
    ; Víctor Yepes Affiliation

Abstract

Multiple criteria decision-making (MCDM) has experienced significant growth in recent years, owing to its capacity to integrate even contradictory criteria. This study conducted a comprehensive literature review of MCDM for assessing, selecting, and retrofitting buildings. The bibliometric search used a search algorithm in specialized databases. A filtering and expansion process was done by reviewing references, and 91 relevant articles were selected. The analysis revealed that in a group of studies, socioeconomic criteria were used to assess the vulnerability of buildings. On the other hand, some research integrated the three dimensions of sustainability (economic, social, and environmental) along with safety considerations when identifying optimal retrofit alternatives. Classic MCDMs are prevalent in research within this field. Among the most used methods, the Analytic Hierarchy Process (AHP) was employed for criteria weighting, Simple Additive Weighting (SAW) for constructing vulnerability indices, and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for building retrofitting. This literature review contributes to the path toward a holistic renovation of the existing building stock, providing recommendations for future research to improve decision-making solutions for integrating the safety and sustainability of existing buildings.

Keyword : decision making, MCDM, multi-criteria, retrofit, structural assessment, sustainability, vulnerability

How to Cite
Villalba, P., Sánchez-Garrido, A. J., & Yepes, V. (2024). A review of multi-criteria decision-making methods for building assessment, selection, and retrofit. Journal of Civil Engineering and Management, 30(5), 465–480. https://doi.org/10.3846/jcem.2024.21621
Published in Issue
Jun 5, 2024
Abstract Views
1594
PDF Downloads
540
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abdrabo, K. I., Kantoush, S. A., Esmaiel, A., Saber, M., Sumi, T., Almamari, M., Elboshy, B., & Ghoniem, S. (2023). An integrated indicator-based approach for constructing an urban flood vulnerability index as an urban decision-making tool using the PCA and AHP techniques: A case study of Alexandria, Egypt. Urban Climate, 48, Article 101426. https://doi.org/10.1016/j.uclim.2023.101426

Ahmed, R., Nasiri, F., & Zayed, T. (2021). A novel Neutrosophic-based machine learning approach for maintenance prioritization in healthcare facilities. Journal of Building Engineering, 42, Article 102480. https://doi.org/10.1016/j.jobe.2021.102480

Alam, M. S., & Haque, S. M. (2020). Seismic vulnerability evaluation of educational buildings of Mymensingh city, Bangladesh using rapid visual screening and index based approach. International Journal of Disaster Resilience in the Built Environment, 11(3), 379–402. https://doi.org/10.1108/IJDRBE-07-2019-0043

Alam, M. S., & Haque, S. M. (2022). Multi-dimensional earthquake vulnerability assessment of residential neighborhoods of Mymensingh City, Bangladesh: A spatial multi-criteria analysis based approach. Journal of Urban Management, 11(1), 37–58. https://doi.org/10.1016/j.jum.2021.09.001

Alam, N., Alam, M. S., & Tesfamariam, S. (2012). Buildings’ seismic vulnerability assessment methods: a comparative study. Natural Hazards, 62(2), 405–424. https://doi.org/10.1007/s11069-011-0082-4

Aliabadi, S. F., Sarsangi, A., & Modiri, E. (2015). The social and physical vulnerability assessment of old texture against earthquake (case study: Fahadan district in Yazd City). Arabian Journal of Geosciences, 8(12), 10775–10787. https://doi.org/10.1007/s12517-015-1939-8

Alizadeh, M., Hashim, M., Alizadeh, E., Shahabi, H., Karami, M. R., Pour, A. B., Pradhan, B., & Zabihi, H. (2018a). Multi-criteria decision making (MCDM) model for seismic vulnerability assessment (SVA) of urban residential buildings. ISPRS International Journal of Geo-Information, 7(11), Article 444. https://doi.org/10.3390/ijgi7110444

Alizadeh, M., Ngah, I., Hashim, M., Pradhan, B., & Pour, A. B. (2018b). A Hybrid Analytic Network Process and Artificial Neural Network (ANP-ANN) model for urban earthquake vulnerability assessment. Remote Sensing, 10(6), Article 975. https://doi.org/10.3390/rs10060975

Andreolli, F., Bragolusi, P., D’Alpaos, C., Faleschini, F., & Zanini, M. A. (2022). An AHP model for multiple-criteria prioritization of seismic retrofit solutions in gravity-designed industrial buildings. Journal of Building Engineering, 45, Article 103493. https://doi.org/10.1016/j.jobe.2021.103493

Anelli, A., Santa-Cruz, S., Vona, M., Tarque, N., & Laterza, M. (2019). A proactive and resilient seismic risk mitigation strategy for existing school buildings. Structure and Infrastructure Engineering, 15(2), 137–151. https://doi.org/10.1080/15732479.2018.1527373

Anelli, A., Vona, M., & Hidalgo, S. S.-C. (2020). Comparison of different intervention options for massive seismic upgrading of essential facilities. Buildings, 10(7), Article 125. https://doi.org/10.3390/buildings10070125

Anwar, G. A., Dong, Y., & Li, Y. (2020). Performance-based decision-making of buildings under seismic hazard considering long-term loss, sustainability, and resilience. Structure and Infrastructure Engineering, 17(4), 454–470. https://doi.org/10.1080/15732479.2020.1845751

Anwar, G. A., Hussain, M., Akber, M. Z., Khan, M. A., & Khan, A. A. (2023). Sustainability-oriented optimization and decision making of community buildings under seismic hazard. Sustainability, 15(5), Article 4385. https://doi.org/10.3390/su15054385

Bahadori, H., Hasheminezhad, A., & Karimi, A. (2017). Development of an integrated model for seismic vulnerability assessment of residential buildings: Application to Mahabad City, Iran. Journal of Building Engineering, 12, 118–131. https://doi.org/10.1016/j.jobe.2017.05.014

Banica, A., Rosu, L., Muntele, I., & Grozavu, A. (2017). Towards urban resilience: A multi-criteria analysis of seismic vulnerability in Iasi City (Romania). Sustainability, 9(2), Article 270. https://doi.org/10.3390/su9020270

Biondini, F., & Frangopol, D. M. (2016). Life-cycle performance of deteriorating structural systems under uncertainty: Review. Journal of Structural Engineering, 142(9), Article F4016001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001544

Briz, E., Garmendia, L., Marcos, I., & Gandini, A. (2023). Improving the resilience of historic areas coping with natural and climate change hazards: Interventions based on multi-criteria methodology. International Journal of Architectural Heritage. https://doi.org/10.1080/15583058.2023.2218311

Carofilis, W. W., Clemett, N., Gabbianelli, G., O’Reilly, G., & Monteiro, R. (2021). Selection of optimal seismic retrofitting for existing school buildings through multi-criteria decision making. In Eccomas Proceedia COMPDYN (pp. 1223–1241). https://doi.org/10.7712/120121.8558.19257

Caruso, M., Couto, R., Pinho, R., & Monteiro, R. (2023). Decision-making approaches for optimal seismic/energy integrated retrofitting of existing buildings. Frontiers in Built Environment, 9. https://doi.org/10.3389/fbuil.2023.1176515

Caterino, N., & Cosenza, E. (2018a). A multi-criteria approach for selecting the seismic retrofit intervention for an existing structure accounting for expected losses and tax incentives in Italy. Engineering Structures, 174, 840–850. https://doi.org/10.1016/j.engstruct.2018.07.090

Caterino, N., & Cosenza, E. (2018b). A multi-criteria approach for selecting the seismic retrofit intervention for an existing structure accounting for expected losses and tax incentives in Italy. Engineering Structures, 174, 840–850. https://doi.org/10.1016/j.engstruct.2018.07.090

Caterino, N., Iervolino, I., Manfredi, G., & Cosenza, E. (2008). Multi-criteria decision making for seismic retrofitting of RC structures. Journal of Earthquake Engineering, 12(4), 555–583. https://doi.org/10.1080/13632460701572872

Caterino, N., Iervolino, I., Manfredi, G., & Cosenza, E. (2009). Comparative analysis of multi-criteria decision-making methods for seismic structural retrofitting. Computer-Aided Civil and Infrastructure Engineering, 24(6), 432–445. https://doi.org/10.1111/j.1467-8667.2009.00599.x

Caterino, N., Nuzzo, I., Ianniello, A., Varchetta, G., & Cosenza, E. (2021). A BIM-based decision-making framework for optimal seismic retrofit of existing buildings. Engineering Structures, 242, Article 112544. https://doi.org/10.1016/j.engstruct.2021.112544

Choi, J., & Choi, J. (2022). Technical feasibility study model of aged apartment renovation applying Analytic Hierarchy Process. Journal of Civil Engineering and Management, 28(1), 39–50. https://doi.org/10.3846/jcem.2021.16013

Chu, J., Zhang, Q., Wang, A., & Yu, H. (2021). A hybrid intelligent model for urban seismic risk assessment from the perspective of possibility and vulnerability based on Particle Swarm Optimization. Scientific Programming, 2021, Article 2218044. https://doi.org/10.1155/2021/2218044

Clemett, N., Gallo, W. W. C., O’Reilly, G. J., Gabbianelli, G., & Monteiro, R. (2022). Optimal seismic retrofitting of existing buildings considering environmental impact. Engineering Structures, 250, Article 113391. https://doi.org/10.1016/j.engstruct.2021.113391

Clemett, N., Carofilis Gallo, W. W., Gabbianelli, G., O’Reilly, G. J., & Monteiro, R. (2023). Optimal combined seismic and energy efficiency retrofitting for existing buildings in Italy. Journal of Structural Engineering, 149(1), Article 04022207. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003500

Dall’Osso, F., Gonella, M., Gabbianelli, G., Withycombe, G., & Dominey-Howes, D. (2009). A revised (PTVA) model for assessing the vulnerability of buildings to tsunami damage. Natural Hazards and Earth System Sciences, 9(5), 1557–1565. https://doi.org/10.5194/nhess-9-1557-2009

D’Alpaos, C., & Valluzzi, M. R. (2020). Protection of cultural heritage buildings and artistic assets from seismic hazard: A hierarchical approach. Sustainability, 12(4), Article 1608. https://doi.org/10.3390/su12041608

de Brito, M. M., & Evers, M. (2016). Multi-criteria decision-making for flood risk management: a survey of the current state of the art. Natural Hazards and Earth System Sciences, 16(4), 1019–1033. https://doi.org/10.5194/nhess-16-1019-2016

Es-haghi, M. S., Barkhordari, M. S., Huang, Z., & Ye, J. (2022). Multicriteria decision-making methods in selecting seismic upgrading strategy of high-rise RC wall buildings. Journal of Structural Engineering, 148(4), Article 04022015. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003304

Fallahpour, A., Wong, K. Y., Rajoo, S., Olugu, E. U., Nilashi, M., & Turskis, Z. (2020). A fuzzy decision support system for sustainable construction project selection: an integrated FPP-FIS model. Journal of Civil Engineering and Management, 26(3), 247–258. https://doi.org/10.3846/jcem.2020.12183

Fayaz, M., Romshoo, S. A., Rashid, I., & Chandra, R. (2023). Earthquake vulnerability assessment of the built environment in the city of Srinagar, Kashmir Himalaya, using a geographic information system. Natural Hazards and Earth System Sciences, 23(4), 1593–1611. https://doi.org/10.5194/nhess-23-1593-2023

Fiore, P., Donnarumma, G., Falce, C., D’Andria, E., & Sicignano, C. (2020a). An AHP-based methodology for decision support in integrated interventions in school buildings. Sustainability, 12(23), Article 10181. https://doi.org/10.3390/su122310181

Fiore, P., Sicignano, E., & Donnarumma, G. (2020b). An AHP-based Methodology for the evaluation and choice of integrated interventions on historic buildings. Sustainability, 12(14), Article 5795. https://doi.org/10.3390/su12145795

Formisano, A., & Mazzolani, F. M. (2015). On the selection by MCDM methods of the optimal system for seismic retrofitting and vertical addition of existing buildings. Computers & Structures, 159, 1–13. https://doi.org/10.1016/j.compstruc.2015.06.016

Formisano, A., Castaldo, C., & Chiumiento, G. (2017). Optimal seismic upgrading of a reinforced concrete school building with metal-based devices using an efficient multi-criteria decision-making method. Structure and Infrastructure Engineering, 13(11), 1373–1389. https://doi.org/10.1080/15732479.2016.1268174

Gacu, J. G., Monjardin, C. E. F., de Jesus, K. L. M., & Senoro, D. B. (2023). GIS-based Risk assessment of structure attributes in flood zones of Odiongan, Romblon, Philippines. Buildings, 13(2), Article 506. https://doi.org/10.3390/buildings13020506

Gallo, W. W. C., Clemett, N., Gabbianelli, G., O’Reilly, G., & Monteiro, R. (2022). Seismic resilience assessment in optimally integrated retrofitting of existing school buildings in Italy. Buildings, 12(6), Article 845. https://doi.org/10.3390/buildings12060845

Gandini, A., Garmendia, L., Prieto, I., Alvarez, I., & San-Jose, J.-T. (2020). A holistic and multi-stakeholder methodology for vulnerability assessment of cities to flooding and extreme precipitation events. Sustainable Cities and Society, 63, Article 102437. https://doi.org/10.1016/j.scs.2020.102437

Gentile, R., & Galasso, C. (2021). Simplified seismic loss assessment for optimal structural retrofit of RC buildings. Earthquake Spectra, 37(1), 346–365. https://doi.org/10.1177/8755293020952441

Gentile, R., Galasso, C., Idris, Y., Rusydy, I., & Meilianda, E. (2019). From rapid visual survey to multi-hazard risk prioritisation and numerical fragility of school buildings. Natural Hazards and Earth System Sciences, 19(7), 1365–1386. https://doi.org/10.5194/nhess-19-1365-2019

Ghajari, Y. E., Alesheikh, A. A., Modiri, M., Hosnavi, R., & Abbasi, M. (2017). Spatial modelling of urban physical vulnerability to explosion hazards using GIS and fuzzy MCDA. Sustainability, 9(7), Article 1274. https://doi.org/10.3390/su9071274

Golcuk, I., & Baykasoglu, A. (2016). An analysis of DEMATEL approaches for criteria interaction handling within ANP. Expert Systems with Applications, 46, 346–366. https://doi.org/10.1016/j.eswa.2015.10.041

Guo, X., & Kapucu, N. (2020). Assessing social vulnerability to earthquake disaster using rough analytic hierarchy process method: A case study of Hanzhong City, China. Safety Science, 125, Article 104625. https://doi.org/10.1016/j.ssci.2020.104625

Hajkowicz, S., & Collins, K. (2007). A review of multiple criteria analysis for water resource planning and management. Water Resources Management, 21(9), 1553–1566. https://doi.org/10.1007/s11269-006-9112-5

Hamdia, K. M., Arafa, M., & Alqedra, M. (2018). Structural damage assessment criteria for reinforced concrete buildings by using a Fuzzy Analytic Hierarchy process. Underground Space, 3(3), 243–249. https://doi.org/10.1016/j.undsp.2018.04.002

Harirchian, E., Jadhav, K., Mohammad, K., Aghakouchaki Hosseini, S. E., & Lahmer, T. (2020). A comparative study of MCDM methods integrated with rapid visual seismic vulnerability assessment of existing RC structures. Applied Sciences, 10(18), Article 6411. https://doi.org/10.3390/app10186411

Hoang, T., Noy, I., Filippova, O., & Elwood, K. (2021). Prioritising earthquake retrofitting in Wellington, New Zealand. Disasters, 45(4), 968–995. https://doi.org/10.1111/disa.12450

Jamal-ud-din, Ainuddin, S., Murtaza, G., Faiz, S., Muhammad, A. S., Raheem, A., & Khan, S. (2023). Earthquake vulnerability assessment through spatial multi-criteria analysis: a case study of Quetta city, Pakistan. Environmental Earth Sciences, 82(11), Article 262. https://doi.org/10.1007/s12665-023-10967-3

Jena, R., & Pradhan, B. (2020). Integrated ANN-cross-validation and AHP-TOPSIS model to improve earthquake risk assessment. International Journal of Disaster Risk Reduction, 50, Article 101723. https://doi.org/10.1016/j.ijdrr.2020.101723

Jena, R., Pradhan, B., & Beydoun, G. (2020). Earthquake vulnerability assessment in Northern Sumatra province by using a multi-criteria decision-making model. International Journal of Disaster Risk Reduction, 46, Article 101518. https://doi.org/10.1016/j.ijdrr.2020.101518

Juliá, P. B., Stellacci, S., & Poletti, E. (2024). Evaluation of retrofitting techniques for historical adobe constructions using a multi-criteria decision analysis: The case study of Chile. International Journal of Architectural Heritage, 18(1), 40–63. https://doi.org/10.1080/15583058.2022.2103476

Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on Distance from Average Solution (EDAS). Informatica, 26(3), 435–451. https://doi.org/10.15388/Informatica.2015.57

Keshavarz Ghorabaee, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Economic Computation and Economic Cybernetics Studies and Research, 50(3), 25–44.

Krstic, M., Agnusdei, G. P., Miglietta, P. P., Tadic, S., & Roso, V. (2022). Applicability of Industry 4.0 technologies in the reverse logistics: A circular economy approach based on COmprehensive Distance Based RAnking (COBRA) method. Sustainability, 14(9), Article 5632. https://doi.org/10.3390/su14095632

Lallam, M., Djebli, A., & Mammeri, A. (2023). Fuzzy analytical hierarchy process for assessing damage in old masonry buildings: A case study. International Journal of Architectural Heritage. https://doi.org/10.1080/15583058.2023.2295885

Lee, S., Panahi, M., Pourghasemi, H. R., Shahabi, H., Alizadeh, M., Shirzadi, A., Khosravi, K., Melesse, A. M., Yekrangnia, M., Rezaie, F., Moeini, H., Pham, B. T., & Bin Ahmad, B. (2019). SEVUCAS: A novel GIS-based machine learning software for seismic vulnerability assessment. Applied Sciences, 9(17), Article 3495. https://doi.org/10.3390/app9173495

Macieira, M., Mendonca, P., Guedes, J. M., & Tereso, A. (2022). Evaluating the efficiency of membrane’s refurbishment solutions to perform vertical extensions in old buildings using a multicriteria decision-support model. Architectural Engineering and Design Management, 18(1), 1–25. https://doi.org/10.1080/17452007.2019.1656597

Makoond, N., Pela, L., & Molins, C. (2021). A risk index for the structural diagnosis of masonry heritage (RISDiMaH). Construction and Building Materials, 284, Article 122433. https://doi.org/10.1016/j.conbuildmat.2021.122433

Maqsoom, A., Aslam, B., Awais, M., Hassan Usman and Alaloul, W. S., Musarat, M. A., & Qureshi, M. I. (2021). Efficiency of multiple hybrid techniques for the earthquake physical susceptibility mapping: the case of Abbottabad District, Pakistan. Environmental Earth Sciences, 80, Article 678. https://doi.org/10.1007/s12665-021-09964-1

Maqsoom, A., Aslam, B., Khalil, U., Mehmood, M. A., Ashraf, H., & Siddique, A. (2024). An integrated approach based earthquake risk assessment of a seismically active and rapidly urbanizing area in Northern Pakistan. Geocarto International, 37(27), 16043–16073. https://doi.org/10.1080/10106049.2022.2105404

Marcher, C., Giusti, A., & Matt, D. T. (2020). Decision support in building construction: A systematic review of methods and application areas. Buildings, 10(10), Article 170. https://doi.org/10.3390/buildings10100170

Martínez-Muñoz, D., Martí, J. V, & Yepes, V. (2022). Social impact assessment comparison of composite and concrete bridge alternatives. Sustainability, 14(9), Article 5186. https://doi.org/10.3390/su14095186

Menna, C., Felicioni, L., Negro, P., Lupisek, A., Romano, E., Prota, A., & Hajek, P. (2022). Review of methods for the combined assessment of seismic resilience and energy efficiency towards sustainable retrofitting of existing European buildings. Sustainable Cities and Society, 77, Article 103556. https://doi.org/10.1016/j.scs.2021.103556

Mili, R. R., Hosseini, K. A., & Izadkhah, Y. O. (2018). Developing a holistic model for earthquake risk assessment and disaster management interventions in urban fabrics. International Journal of Disaster Risk Reduction, 27, 355–365. https://doi.org/10.1016/j.ijdrr.2017.10.022

Mladineo, N., Mladineo, M., Benvenuti, E., Kekez, T., & Nikolic, Z. (2022). Methodology for the assessment of multi-hazard risk in urban homogenous zones. Applied Sciences, 12(24), Article 12843. https://doi.org/10.3390/app122412843

Moradi, M., Delavar, M. R., & Moshiri, B. (2015). A GIS-based multi-criteria decision-making approach for seismic vulnerability assessment using quantifier-guided OWA operator: a case study of Tehran, Iran. Annals of GIS, 21(3), 209–222. https://doi.org/10.1080/19475683.2014.966858

Mourato, S., Fernandez, P., Pereira, L. G., & Moreira, M. (2023). Assessing vulnerability in flood prone areas using Analytic Hierarchy Process-Group decision making and geographic information system: A case study in Portugal. Applied Sciences, 13(8), Article 4915. https://doi.org/10.3390/app13084915

Murray, P. B., Feliciano, D., Goldwyn, B. H., Liel, A. B., Arroyo, O., & Javernick-Will, A. (2023). Seismic safety of informally constructed reinforced concrete houses in Puerto Rico. Earthquake Spectra, 39(1), 5–33. https://doi.org/10.1177/87552930221123085

Nadkarni, R. R., & Puthuvayi, B. (2020). A comprehensive literature review of multi-criteria decision making methods in heritage buildings. Journal of Building Engineering, 32, Article 101814. https://doi.org/10.1016/j.jobe.2020.101814

Narjabadifam, P., Hoseinpour, R., Noori, M., & Altabey, W. (2021). Practical seismic resilience evaluation and crisis management planning through GIS-based vulnerability assessment of buildings. Earthquake Engineering and Engineering Vibration, 20(1), 25–37. https://doi.org/10.1007/s11803-021-2003-1

Navarro, I. J., Yepes, V., & Martí, J. V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, 50–63. https://doi.org/10.1016/j.eiar.2018.05.003

Navarro, I. J., Yepes, V., & Martí, J. V. (2019). A review of multicriteria assessment techniques applied to sustainable infrastructure design. Advances in Civil Engineering, 2019, Article 6134803. https://doi.org/10.1155/2019/6134803

Navarro, I. J., Yepes, V., & Martí V, J. (2020a). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7), 949–967. https://doi.org/10.1080/15732479.2019.1676791

Navarro, I. J., Penadés-Plà, V., Martínez-Muñoz, D., Rempling, R., & Yepes, V. (2020b). Life cycle sustainability assessment for multi-criteria decision making in bridge design: a review. Journal of Civil Engineering and Management, 26(7), 690–704. https://doi.org/10.3846/jcem.2020.13599

Nazmfar, H. (2019). An integrated approach of the analytic network process and fuzzy model mapping of evaluation of urban vulnerability against earthquake. Geomatics Natural Hazards & Risk, 10(1), 1512–1528. https://doi.org/10.1080/19475705.2019.1588791

Nazmfar, H., Saredeh, A., Eshgi, A., & Feizizadeh, B. (2019). Vulnerability evaluation of urban buildings to various earthquake intensities: a case study of the municipal zone 9 of Tehran. Human and Ecological Risk Assessment, 25(1–2, SI), 455–474. https://doi.org/10.1080/10807039.2018.1556086

Nguyen, M. V. (2023). Drivers of innovation towards sustainable construction: A study in a developing country. Journal of Building Engineering, 80, Article 107970. https://doi.org/10.1016/j.jobe.2023.107970

Nuno Martins, V., e Silva, D., & Cabral, P. (2012). Social vulnerability assessment to seismic risk using multicriteria analysis: the case study of Vila Franca do Campo (So Miguel Island, Azores, Portugal). Natural Hazards, 62(2), 385–404. https://doi.org/10.1007/s11069-012-0084-x

Palermo, V., Tsionis, G., & Sousa, M. L. (2018). Building stock inventory to assess seismic vulnerability across Europe. Publications Office of the European Union. https://doi.org/10.2760/530683

Panahi, M., Rezaie, F., & Meshkani, S. A. (2014). Seismic vulnerability assessment of school buildings in Tehran city based on AHP and GIS. Natural Hazards and Earth System Sciences, 14(4), 969–979. https://doi.org/10.5194/nhess-14-969-2014

Papathoma-Koehle, M., Cristofari, G., Wenk, M., & Fuchs, S. (2019). The importance of indicator weights for vulnerability indices and implications for decision making in disaster management. International Journal of Disaster Risk Reduction, 36, Article 101103. https://doi.org/10.1016/j.ijdrr.2019.101103

Pashaei, R., & Moghadam, A. S. (2018). Fuzzy AHP method for selection of a suitable seismic retrofitting alternative in low-rise buildings. Civil Engineering Journal-Tehran, 4(5), 1074–1086. https://doi.org/10.28991/cej-0309157

Passoni, C., Caruso, M., Marini, A., Pinho, R., & Landolfo, R. (2022). The role of life cycle structural engineering in the transition towards a sustainable building renovation: Available tools and research needs. Buildings, 12(8), Article 1107. https://doi.org/10.3390/buildings12081107

Penadés-Plà, V., García-Segura, T., Martí, J. V, & Yepes, V. (2016). A review of multi-criteria decision-making methods applied to the sustainable bridge design. Sustainability, 8(12), Article 1295. https://doi.org/10.3390/su8121295

Pinero, I., San-Jose, J. T., Rodriguez, P., & Losanez, M. M. (2017). Multi-criteria decision-making for grading the rehabilitation of heritage sites. Application in the historic center of La Habana. Journal of Cultural Heritage, 26, 144–152. https://doi.org/10.1016/j.culher.2017.01.012

Pohoryles, D. A., Bournas, D. A., Da Porto, F., Caprino, A., Santarsiero, G., & Triantafillou, T. (2022). Integrated seismic and energy retrofitting of existing buildings: A state-of-the-art review. Journal of Building Engineering, 61, Article 105274. https://doi.org/10.1016/j.jobe.2022.105274

Pons, J. J., Penadés-Plà, V., Yepes, V., & Martí, J. V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192, 411–420. https://doi.org/10.1016/j.jclepro.2018.04.268

Pour, M. T. (2015). Prioritization of methods for seismic retrofitting of structures. Journal of Engineering Science and Technology, 10(SI), 64–80.

Ranjbar, H. R., & Nekooie, M. A. (2018). An improved hierarchical fuzzy TOPSIS approach to identify endangered earthquake-induced buildings. Engineering Applications of Artificial Intelligence, 76, 21–39. https://doi.org/10.1016/j.engappai.2018.08.007

Requena-Garcia-Cruz, M. V, Morales-Esteban, A., & Durand-Neyra, P. (2022). Assessment of specific structural and ground-improvement seismic retrofitting techniques for a case study RC building by means of a multi-criteria evaluation. Structures, 38, 265–278. https://doi.org/10.1016/j.istruc.2022.02.015

Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57. https://doi.org/10.1016/j.omega.2014.11.009

Rezaie, F., & Panahi, M. (2015). GIS modeling of seismic vulnerability of residential fabrics considering geotechnical, structural, social and physical distance indicators in Tehran using multi-criteria decision-making techniques. Natural Hazards and Earth System Sciences, 15(3), 461–474. https://doi.org/10.5194/nhess-15-461-2015

Sadrykia, M., Delavar, M. R., & Zare, M. (2017). A GIS-based fuzzy decision making model for seismic vulnerability assessment in areas with incomplete data. ISPRS International Journal of Geo-Information, 6(4), Article 119. https://doi.org/10.3390/ijgi6040119

Sánchez-Garrido, A. J., & Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258, Article 120556. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.120556

Sánchez-Garrido, A. J., Navarro, I. J., & Yepes, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homes. Environmental Impact Assessment Review, 89, Article 106572. https://doi.org/10.1016/j.eiar.2021.106572

Sánchez-Garrido, A. J., Navarro, I. J., & Yepes, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on modern methods of construction. Journal of Cleaner Production, 330, Article 129724. https://doi.org/10.1016/j.jclepro.2021.129724

Sangiorgio, V., Uva, G., & Fatiguso, F. (2018a). Optimized AHP to overcome limits in weight calculation: Building performance application. Journal of Construction Engineering and Management, 144(2), Article 04017101. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001418

Sangiorgio, V., Uva, G., & Fatiguso, F. (2018b). User reporting-based semeiotic assessment of existing building stock at the regional scale. Journal of Performance of Constructed Facilities, 32(6), Article 04018079. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001227

Sangiorgio, V., Martiradonna, S., Fatiguso, F., & Uva, G. (2020a). AHP-based methodology integrating modern information technologies for historical masonry churches diagnosis. Archeologia e Calcolatori, 31(2), 257–268. https://doi.org/10.19282/ac.31.2.2020.24

Sangiorgio, V., Uva, G., & Aiello, M. A. (2020b). A multi-criteria-based procedure for the robust definition of algorithms aimed at fast seismic risk assessment of existing RC buildings. Structures, 24, 766–782. https://doi.org/10.1016/j.istruc.2020.01.048

Sangiorgio, V., Uva, G., & Adam, J. M. (2021). Integrated seismic vulnerability assessment of historical masonry churches including architectural and artistic assets based on macro-element approach. International Journal of Architectural Heritage, 15(11), 1609–1622. https://doi.org/10.1080/15583058.2019.1709916

Santa-Cruz, S., Cordova-Arias, C., Brioso, X., & Vazquez-Rowe, I. (2021). Transparency-based protocol for decision-making regarding seismic rehabilitation projects of public buildings. International Journal of Disaster Risk Reduction, 55, Article 102116. https://doi.org/10.1016/j.ijdrr.2021.102116

Santarsiero, G., Masi, A., Manfredi, V., & Ventura, G. (2021). Requalification of RC frame apartment buildings: Comparison of seismic retrofit solutions based on a multi-criteria approach. Sustainability, 13(17), Article 9962. https://doi.org/10.3390/su13179962

Selvan, S. U., Saroglou, S. T., Joschinski, J., Calbi, M., Vogler, V., Barath, S., & Grobman, Y. J. (2023). Toward multi-species building envelopes: A critical literature review of multi-criteria decision-making for design support. Building and Environment, 231, Article 110006. https://doi.org/10.1016/j.buildenv.2023.110006

Shahriar, A., Modirzadeh, M., Sadiq, R., & Tesfamariam, S. (2012). Seismic induced damageability evaluation of steel buildings: a Fuzzy-TOPSIS method. Earthquakes and Structures, 3(5), 695–717. https://doi.org/10.12989/eas.2012.3.5.695

Sierra, L. A., Yepes, V., & Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187, 496–513. https://doi.org/10.1016/j.jclepro.2018.03.022

Sinha, N., Priyanka, N., & Joshi, P. K. (2016). Using Spatial multi-criteria analysis and ranking tool (SMART) in earthquake risk assessment: A case study of Delhi region, India. Geomatics Natural Hazards & Risk, 7(2), 680–701. https://doi.org/10.1080/19475705.2014.945100

Stanujkic, D., Popovic, G., Karabasevic, D., Meidute-Kavaliauskiene, I., & Ulutas, A. (2023). An integrated simple weighted sum product method-WISP. IEEE Transactions on Engineering Management, 70(5), 1933–1944. https://doi.org/10.1109/TEM.2021.3075783

Tartaglia, R., Milone, A., D’Aniello, M., & Landolfo, R. (2022). Retrofit of non-code conforming moment resisting beam-to-column joints: A case study. Journal of Constructional Steel Research, 189, Article 107095. https://doi.org/10.1016/j.jcsr.2021.107095

Terracciano, G., Di Lorenzo, G., Formisano, A., & Landolfo, R. (2015). Cold-formed thin-walled steel structures as vertical addition and energetic retrofitting systems of existing masonry buildings. European Journal of Environmental and Civil Engineering, 19(7), 850–866. https://doi.org/10.1080/19648189.2014.974832

Tesfamariam, S., Sadiq, R., & Najjaran, H. (2010). Decision making under uncertainty – An example for seismic risk management. Risk Analysis, 30(1), 78–94. https://doi.org/10.1111/j.1539-6924.2009.01331.x

Usman Kaoje, I., Abdul Rahman, M. Z., Idris, N. H., Razak, K. A., Wan Mohd Rani, W. N. M., Tam, T. H., & Mohd Salleh, M. R. (2021). Physical flood vulnerability assessment using geospatial indicator-based approach and participatory analytical hierarchy process: A case study in Kota Bharu, Malaysia. Water, 13(13), Article 1786. https://doi.org/10.3390/w13131786

Uva, G., Sangiorgio, V., Ruggieri, S., & Fatiguso, F. (2019). Structural vulnerability assessment of masonry churches supported by user-reported data and modern Internet of Things (IoT). Measurement, 131, 183–192. https://doi.org/10.1016/j.measurement.2018.08.014

Vahdat, K., Smith, N. J., & Amiri, G. G. (2014). Fuzzy multicriteria for developing a risk management system in seismically prone areas. Socio-Economic Planning Sciences, 48(4), 235–248. https://doi.org/10.1016/j.seps.2014.05.002

Vázquez-Rowe, I., Córdova-Arias, C., Brioso, X., & Santa-Cruz, S. (2021). A method to include life cycle assessment results in Choosing by Advantage (CBA) multicriteria decision analysis. A case study for seismic retrofit in Peruvian primary schools. Sustainability, 13(15), Article 8139. https://doi.org/10.3390/su13158139

Vona, M., Anelli, A., Mastroberti, M., Murgante, B., & Santa-Cruz, S. (2017). Prioritization strategies to reduce the seismic risk of the public and strategic buildings. Disaster Advances, 10(4), 1–15.

Wen, Z., Liao, H., Zavadskas, E. K., & Antuchevicienc, J. (2021). Applications of fuzzy multiple criteria decision making methods in civil engineering: A state-of-the-art survey. Journal of Civil Engineering and Management, 27(6), 358–371. https://doi.org/10.3846/jcem.2021.15252

Yariyan, P., Zabihi, H., Wolf, I. D., Karami, M., & Amiriyan, S. (2020). Earthquake risk assessment using an integrated fuzzy analytic hierarchy process with artificial neural networks based on GIS: A case study of Sanandaj in Iran. International Journal of Disaster Risk Reduction, 50, Article 101705. https://doi.org/10.1016/j.ijdrr.2020.101705

Zavadskas, E. K., Govindan, K., Antucheviciene, J., & Turskis, Z. (2016). Hybrid multiple criteria decision-making methods: A review of applications for sustainability issues. Economic Research-Ekonomska Istrazivanja, 29(1), 857–887. https://doi.org/10.1080/1331677X.2016.1237302

Zavadskas, E. K., Antucheviciene, J., Vilutiene, T., & Adeli, H. (2018). Sustainable decision-making in civil engineering, construction and building technology. Sustainability, 10(1), Article 14. https://doi.org/10.3390/su10010014

Zavadskas, E. K., Antucheviciene, J., Hosseini, M. R., & Martek, I. (2021). Sustainable construction engineering and management. Sustainability, 13(23), Article 13028. https://doi.org/10.3390/su132313028

Zhen, Y., Liu, S., Zhong, G., Zhou, Z., Liang, J., Zheng, W., & Fang, Q. (2022). Risk assessment of flash flood to buildings using an indicator-based methodology: A case study of mountainous rural settlements in Southwest China. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.931029

Zhu, X., Meng, X., & Zhang, M. (2021). Application of multiple criteria decision making methods in construction: A systematic literature review. Journal of Civil Engineering and Management, 27(6), 372–403. https://doi.org/10.3846/jcem.2021.15260

Zhu, J., Zhang, Y., Zhang, J., Chen, Y., Liu, Y., & Liu, H. (2023). Multi-criteria seismic risk assessment based on Combined Weight-TOPSIS model and CF-Logistic regression model – A case study of Songyuan City, China. Sustainability, 15(14), Article 11216. https://doi.org/10.3390/su151411216

Zuluaga, S. S., Kallioras, S., & Tsiavos, A. (2022). Optimization of synergetic seismic and energy retrofitting based on timber beams and bio-based infill panels: Application to an existing masonry building in Switzerland. Buildings, 12(8), Article 1126. https://doi.org/10.3390/buildings12081126