Share:


Forecasting mechanical properties of steel structures through dynamic metaheuristic optimization for adaptive machine learning

    Ngoc-Mai Nguyen Affiliation
    ; Jui-Sheng Chou Affiliation

Abstract

Machine learning (ML) presents a promising method for predicting mechanical properties in structural engineering, particularly within complex nonlinear structures under extreme conditions. Despite its potential, research has shown a disproportionate focus on concrete structures, leaving steel structures less explored. Furthermore, the prevalent combination of metaheuristic optimization (MO) and ML in existing studies is often subjective, pointing to a significant gap in identifying and leveraging more effective hybrid models. To bridge these gaps, this study introduces a novel system named the Multiple Metaheuristic Optimizers – Multiple Machine Learners (MMOMML) system, designed for predicting mechanical strength in steel structures. The MMOMML system amalgamates 17 MO algorithms with 15 ML techniques, generating 255 hybrid models, including numerous novel configurations not previously examined. With a user-friendly interface, MMOMML enables structural engineers to tackle inference challenges efficiently, regardless of their coding proficiency. This capability is convincingly demonstrated through two practical applications: steel beams’ shear strength and steel cellular beams’ elastic buckling. By offering a versatile and robust tool, the MMOMML system meets construction engineers’ and researchers’ practical and research needs, marking a significant advancement in the field.

Keyword : mechanical strength, structural properties, steel structures, machine learning, hybrid models, metaheuristic optimization algorithms, prediction/estimation problems, application interface, multiple metaheuristic optimizers, multiple machine learners

How to Cite
Nguyen, N.-M., & Chou, J.-S. (2024). Forecasting mechanical properties of steel structures through dynamic metaheuristic optimization for adaptive machine learning. Journal of Civil Engineering and Management, 30(5), 414–436. https://doi.org/10.3846/jcem.2024.21356
Published in Issue
May 27, 2024
Abstract Views
831
PDF Downloads
346
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abedinpourshotorban, H., Mariyam Shamsuddin, S., Beheshti, Z., & Jawawi, D. N. A. (2016). Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation, 26, 8–22. https://doi.org/10.1016/j.swevo.2015.07.002

Adorisio, D. (1982). Model studies on plate girders subjected to shear loading. University of Wales Cardiff, UK.

Asif Bin Kabir, M., Sajid Hasan, A., & Muntasir Billah, A. H. M. (2021). Failure mode identification of column base plate connection using data-driven machine learning techniques. Engineering Structures, 240, Article 112389. https://doi.org/10.1016/j.engstruct.2021.112389

Basler, K., Mueller, J., Thurlimann, B., & Yen, B. (1960). Web buckling tests on welded plate girders, Part 2: Tests on plate girders subjected to bending (WRC Bulletin, 64), Reprint No. 165 (60-5).

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324

Cao, M.-T., Nguyen, N.-M., Chang, K.-T., Tran, X.-L., & Hoang, N.-D. (2021). Automatic recognition of concrete spall using image processing and metaheuristic optimized LogitBoost classification tree. Advances in Engineering Software, 159, Article 103031. https://doi.org/10.1016/j.advengsoft.2021.103031

Cao, M.-T., Hoang, N.-D., Nhu, V. H., & Bui, D. T. (2022). An advanced meta-learner based on artificial electric field algorithm optimized stacking ensemble techniques for enhancing prediction accuracy of soil shear strength. Engineering with Computers, 38, 2185–2220. https://doi.org/10.1007/s00366-020-01116-6

Carskaddan, P. S. (1968). Shear buckling of unstiffened hybrid beams. Journal of the Structural Division, 94, 1965–1990. https://doi.org/10.1061/JSDEAG.0002039

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794), San Francisco, California, USA. https://doi.org/10.1145/2939672.2939785

Cheng, M.-Y., & Cao, M.-T. (2016). Estimating strength of rubberized concrete using evolutionary multivariate adaptive regression splines. Journal of Civil Engineering and Management, 22(5), 711–720. https://doi.org/10.3846/13923730.2014.897989

Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic organisms search: A new metaheuristic optimization algorithm. Computers & Structures, 139, 98–112. https://doi.org/10.1016/j.compstruc.2014.03.007

Chou, J.-S., & Nguyen, N.-M. (2020). FBI inspired meta-optimization. Applied Soft Computing, 93, Article 106339. https://doi.org/10.1016/j.asoc.2020.106339

Conolly, B. W. (1958). A difference equation technique applied to the simple queue. Journal of the Royal Statistical Society: Series B (Methodological), 20, 165–167. https://doi.org/10.1111/j.2517-6161.1958.tb00285.x

Cooper, P. B., Lew, H. S., & Yen, B. T. (1964). Welded constructional alloy steel plate girders. Journal of the Structural Division, 90(1), 1–36. https://doi.org/10.1061/JSDEAG.0001023

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297. https://doi.org/10.1007/BF00994018

Degtyarev, V. V., & Tsavdaridis, K. D. (2022). Buckling and ultimate load prediction models for perforated steel beams using machine learning algorithms. Journal of Building Engineering, 51, Article 104316. https://doi.org/10.1016/j.jobe.2022.104316

Deng, E.-F., Zong, L., Ding, Y., Zhang, Z., Zhang, J.-F., Shi, F.-W., Cai, L.-M., & Gao, S.-C. (2020). Seismic performance of mid-to-high rise modular steel construction – A critical review. Thin-Walled Structures, 155, Article 106924, https://doi.org/10.1016/j.tws.2020.106924

Elamary, A. S., Mohamed, M. A., Sharaky, I. A., Mohamed, A. K., Alharthi, Y. M., & Ali, M. A. M. (2023). Utilizing artificial intelligence approaches to determine the shear strength of steel beams with flat webs. Metals, 13(2), Article 232. https://doi.org/10.3390/met13020232

Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110–111, 151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

Evans, H. (1984). A report on the full scale tests on a girder with a stiffened web subjected to combined shear and bending loads. University of Wales, College of Cardiff, UK.

Evans, H. (1986). An appraisal, by full-scale testing, of new design procedures for steel girders subjected to shear and bending. Proceedings of the Institution of Civil Engineers, 81, 175–189. https://doi.org/10.1680/iicep.1986.599

Evans, H. R., & Tang, K. (1983). An investigation of the ultimate load behaviour of longitudinally stiffened plate girder webs loaded predominantly in shear. University College Cardiff, UK.

Evans, H., Rockey, K., & Porter, D. (1977). Tests on longitudinally reinforced plate girders subjected to shear. In Proceedings of the Conference of Structural Stability (pp. 295–304), Liege, Belgium.

Evans, E., Rockey, K., & Tang, K. (1979). An investigation into the rigidity of longitudinal web stiffeners for plate girders. University of Wales, College of Cardiff, UK.

Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2020). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems, 191, Article 105190. https://doi.org/10.1016/j.knosys.2019.105190

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139. https://doi.org/10.1006/jcss.1997.1504

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1–67. https://doi.org/10.1214/aos/1176347963

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The Annals of Statistics, 28(2), 337–407. https://doi.org/10.1214/aos/1016218223

Fu, F. (2020). Fire induced progressive collapse potential assessment of steel framed buildings using machine learning. Journal of Constructional Steel Research, 166, Article 105918. https://doi.org/10.1016/j.jcsr.2019.105918

Galton, F. (1886). Regression towards mediocrity in hereditary stature. The Journal of the Anthropological Institute of Great Britain and Ireland, 15, 246–263. https://doi.org/10.2307/2841583

Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831–4845. https://doi.org/10.1016/j.cnsns.2012.05.010

Ghiasi, R., Torkzadeh, P., & Noori, M. (2016). A machine-learning approach for structural damage detection using least square support vector machine based on a new combinational kernel function. Structural Health Monitoring, 15(3), 302–316. https://doi.org/10.1177/1475921716639587

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Professional.

Gordon, A., Breiman, L., Friedman, J., Olshen, R., & Stone, C. J. (1984). Classification and regression trees. Biometrics, 40(3), Article 874. https://doi.org/10.2307/2530946

Grilo, L. F., Fakury, R. H., Castro e Silva, A. L. R. d., & Veríssimo, G. d. S. (2018). Design procedure for the web-post buckling of steel cellular beams. Journal of Constructional Steel Research, 148, 525–541. https://doi.org/10.1016/j.jcsr.2018.06.020

Hamdia, K. M., Zhuang, X., & Rabczuk, T. (2021). An efficient optimization approach for designing machine learning models based on genetic algorithm. Neural Computing and Applications, 33, 1923–1933. https://doi.org/10.1007/s00521-020-05035-x

Hasni, H., Alavi, A. H., Jiao, P., & Lajnef, N. (2017). Detection of fatigue cracking in steel bridge girders: A support vector machine approach. Archives of Civil and Mechanical Engineering, 17(3), 609–622. https://doi.org/10.1016/j.acme.2016.11.005

Hastie, T., Rosset, S., Zhu, J., & Zou, H. (2009). Multi-class adaboost. Statistics and its Interface, 2(3), 349–360. https://doi.org/10.4310/SII.2009.v2.n3.a8

Holland, J. (1975). Adaptation in neural and artificial system. Univeristy of Michigan Press.

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm configuration. In C. A. C. Coello (Eds.), Lecture notes in computer science: Vol. 6683. Learning and intelligent optimization. LION 2011 (pp. 507–523). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25566-3_40

Jang, J.-S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685. https://doi.org/10.1109/21.256541

Kamtekar, A., Dwight, J., & Threlfall, B. (1972). Tests on hybrid plate girders (Report No. 2). Cambridge University, Department of Engineering.

Kamtekar, A., Dwight, J., & Threlfall, B. (1974). Tests on hybrid plate girders (Report No. 3). Cambridge University, Department of Engineering.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39, 459–471. https://doi.org/10.1007/s10898-007-9149-x

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. In 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Kendall, M. G. (1957). A course in multivariate analysis. Charles Griffin & Co.

Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia of machine learning (pp. 760–766). Springer. https://doi.org/10.1007/978-0-387-30164-8_630

Konishi, I. (1965). Theories and experiments on the load carrying capacity of plate girders (Report of Research Committee of Bridges, Steel Frames and Welding in Kansai District in Japan). Japan.

Kumar, S., & Kaur, T. (2016). Development of ANN based model for solar potential assessment using various meteorological parameters. Energy Procedia, 90, 587–592. https://doi.org/10.1016/j.egypro.2016.11.227

Lee, S. C., & Yoo, C. H. (1998). Strength of plate girder web panels under pure shear. Journal of Structural Engineering, 124(2), 184–194. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:2(184)

Liu, X., Zhou, X., Zhang, A., Tian, C., Zhang, X., & Tan, Y. (2018). Design and compilation of specifications for a modular-prefabricated high-rise steel frame structure with diagonal braces. Part I: Integral structural design. The Structural Design of Tall and Special Buildings, 27, Article e1415. https://doi.org/10.1002/tal.1415

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5, 115–133. https://doi.org/10.1007/BF02478259

Merrikh-Bayat, F. (2015). The runner-root algorithm: A metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Applied Soft Computing, 33, 292–303. https://doi.org/10.1016/j.asoc.2015.04.048

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation, 1(2), 281–294. https://doi.org/10.1162/neco.1989.1.2.281

Panedpojaman, P., Thepchatri, T., & Limkatanyu, S. (2014). Novel design equations for shear strength of local web-post buckling in cellular beams. Thin-Walled Structures, 76, 92–104. https://doi.org/10.1016/j.tws.2013.11.007

Pearson, K. (1904). On the theory of contingency and its relation to association and normal correlation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 203, 53–71.

Rajana, K., Tsavdaridis, K. D., & Koltsakis, E. (2020). Elastic and inelastic buckling of steel cellular beams under strong-axis bending. Thin-Walled Structures, 156, Article 106955. https://doi.org/10.1016/j.tws.2020.106955

Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

Roberts, T. M., & Shahabian, F. (2000). Design procedures for combined shear and patch loading of plate girders. Proceedings of the Institution of Civil Engineers – Structures and Buildings, 140, 219–225. https://doi.org/10.1680/stbu.2000.140.3.219

Rockey, K., & Skaloud, M. (1972). The ultimate load behaviour of plate girders loaded in shear. The Structural Engineer, 50, 29–47. https://doi.org/10.5169/seals-12050

Rockey, K., Valtinat, G., & Tang, K. (1981). The design of transverse stiffeners on webs loaded in shear – an ultimate load approach. Proceedings of the Institution of Civil Engineers, 71, 1069–1099. https://doi.org/10.1680/iicep.1981.1757

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536. https://doi.org/10.1038/323533a0

Sahu, B. K., Pati, S., Mohanty, P. K., & Panda, S. (2015). Teaching–learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system. Applied Soft Computing, 27, 240–249. https://doi.org/10.1016/j.asoc.2014.11.027

Sakai, F., Doi, K., Nishino, F., & Okumura, T. (1966). Failure tests of plate girders using large sized models (Structural Engineering Laboratory Report). Department of Civil Engineering, University of Tokyo, Japan.

Salehi, H., & Burgueño, R. (2018). Emerging artificial intelligence methods in structural engineering. Engineering Structures, 171, 170–189. https://doi.org/10.1016/j.engstruct.2018.05.084

Skaloud, M. (1971). Ultimate load and failure mechanism of thin webs in shear. In IABSE Colloquium (Vol. 11, pp. 115–127). https://doi.org/10.5169/seals-12056

Storn, R., & Price, K. (1997). Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359. https://doi.org/10.1023/A:1008202821328

Sun, H., Burton, H. V., & Huang, H. (2021). Machine learning applications for building structural design and performance assessment: State-of-the-art review. Journal of Building Engineering, 33, Article 101816. https://doi.org/10.1016/j.jobe.2020.101816

Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9, 293–300. https://doi.org/10.1023/A:1018628609742

Suykens, J. A. K., Gestel, T. V., Brabanter, J. D., Moor, B. D., & Vandewalle, J. (2002). Least squares support vector machines. World Scientific Publishing Company. https://doi.org/10.1142/5089

Sweedan, A. M. I. (2011). Elastic lateral stability of I-shaped cellular steel beams. Journal of Constructional Steel Research, 67(2), 151–163. https://doi.org/10.1016/j.jcsr.2010.08.009

Tang, K. H., & Evans, H. R. (1984). Transverse stiffeners for plate girder webs – an experimental study. Journal of Constructional Steel Research, 4(4), 253–280. https://doi.org/10.1016/0143-974X(84)90002-6

Thai, H.-T. (2022). Machine learning for structural engineering: A state-of-the-art review. Structures, 38, 448–491. https://doi.org/10.1016/j.istruc.2022.02.003

Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T., & Wahab, M. A. (2019). An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm. Engineering Structures, 199, Article 109637. https://doi.org/10.1016/j.engstruct.2019.109637

Truong, V.-H., Pham, H.-A., Huynh Van, T., & Tangaramvong, S. (2022). Evaluation of machine learning models for load-carrying capacity assessment of semi-rigid steel structures. Engineering Structures, 273, Article 115001. https://doi.org/10.1016/j.engstruct.2022.115001

Tsavdaridis, K. D., & D’Mello, C. (2011). Web buckling study of the behaviour and strength of perforated steel beams with different novel web opening shapes. Journal of Constructional Steel Research, 67(10), 1605–1620. https://doi.org/10.1016/j.jcsr.2011.04.004

Vapnik, V., Golowich, S., & Smola, A. (1996). Support vector method for function approximation, regression estimation and signal processing. In Proceedings of the 9th International Conference on Neural Information Processing Systems (NIPS’96) (pp. 281–287).

Wang, G.-G. (2018). Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing, 10, 151–164. https://doi.org/10.1007/s12293-016-0212-3

Yang, X.-S. (2010). Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation, 2(2), 78–84. https://doi.org/10.1504/IJBIC.2010.032124

Yang, X.-S. (2012). Flower pollination algorithm for global optimization. In J. Durand-Lose, & N. Jonoska (Eds.), Unconventional computation and natural computation. UCNC 2012. Lecture notes in computer science (Vol. 7445, pp. 240–249). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32894-7_27

Yang, X.-S., & Deb, S. (2009). Cuckoo search via Lévy flights. In Proceeings of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009) (pp. 210–214), India. IEEE. https://doi.org/10.1109/NABIC.2009.5393690

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061

Zakir Sarothi, S., Sakil Ahmed, K., Imtiaz Khan, N., Ahmed, A., & Nehdi, M. L. (2022). Predicting bearing capacity of double shear bolted connections using machine learning. Engineering Structures, 251, Article 113497. https://doi.org/10.1016/j.engstruct.2021.113497

Zhang, J., Cao, Y., Xia, L., Zhang, D., Xu, W., & Liu, Y. (2023). Intelligent prediction of the frost resistance of high-performance concrete: a machine learning method. Journal of Civil Engineering and Management, 29(6), 516–529. https://doi.org/10.3846/jcem.2023.19226

Zhou, Q., Ning, Y., Zhou, Q., Luo, L., & Lei, J. (2012). Structural damage detection method based on random forests and data fusion. Structural Health Monitoring, 12(1), 48–58. https://doi.org/10.1177/1475921712464572