Share:


Numerical modelling of thermal regime of railway track - structure with thermal insulation (Styrodur)

    Libor Ižvolt Affiliation
    ; Peter Dobeš Affiliation
    ; Michaela Holešová Affiliation
    ; Deividas Navikas Affiliation

Abstract

This paper presents the results of numerical modelling of the influence of various factors (geometrical layout of the structural layers of the railway track, climatic factors and ballast fouling) on the freezing of railway track structure with a built-in thermal insulation layer of extruded polystyrene (Styrodur). At the same time, the suitability and expediency of incorporating the thermal insulation layer at the sub-ballast upper surface level (i.e. below the rail ballast construction layer), or at the level of subgrade surface are discussed. Numerical modelling results in the main factors that should be taken into account in the dimensioning of the sub-ballast layers with a built-in thermal insulation layer. Based on the data on the depth of freezing of the railway track structure obtained from numerical modelling, a design nomogram for dimensioning was created and subsequently the influence of the changes of climatic characteristics on the freezing of the railway track structure was then mathematically expressed.

Keyword : railway track, non-traffic railway track loading, freezing of the railway track structure, sub-ballast layer dimensioning, thermal insulation layer, extruded polystyrene, thickness of protective layer

How to Cite
Ižvolt, L., Dobeš, P., Holešová, M., & Navikas, D. (2021). Numerical modelling of thermal regime of railway track - structure with thermal insulation (Styrodur). Journal of Civil Engineering and Management, 27(7), 525-538. https://doi.org/10.3846/jcem.2021.14903
Published in Issue
Oct 6, 2021
Abstract Views
1153
PDF Downloads
556
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Addison, P., Lautala, P., Oommen, T., & Vallos, Z. (2016). Embankment stabilization techniques for railroads on permafrost. In Proceedings of the 2016 Joint Rail Conference. Columbia, USA. https://doi.org/10.1115/JRC2016-5731

Bąk, A., & Chmielewski, R. (2019). The influence of fine fractions content in non-cohesive soils on their compactibility and the CBR value. Journal of Civil Engineering and Management, 25(4), 353–361. https://doi.org/10.3846/jcem.2019.9687

Buša, J., Pirč, V., & Schrötter, Š. (2006). Numerical methods, probability and mathematical statistics Košice (in Slovak). http://web.tuke.sk/fei-km/sites/default/files/prilohy/1/statnumo.pdf

DataTaker. (2006). DT80 series user’s manual. https://asset.conrad.com/media10/add/160267/c1/-/en/000122969ML01/000122969ML01.pdf

Directorate General of Railways of the Slovak Republic. (2005). The design of structural layers of subgrade structures (TNŽ 73 6312). Slovak Republic (in Slovak).

Dobeš, P., Ižvolt, L., Mečár, M., & Malachová, J. (2017). The determination of values of the specific heat capacity of the selected thermal insulation materials used in track bed structure. In Proceedings of the 26th R-S-P Seminar 2017, Theoretical Foundation of Civil Engineering. Warsaw, Poland. https://doi.org/10.1051/matecconf/201711700039

Fredlund, D. G. (2019). State of practice for use of the soil-water characteristic curve (SWCC) in geotechnical engineering. Canadian Geotechnical Journal, 56(8), 1059–1069. https://doi.org/10.1139/cgj-2018-0434

Fredlund, M. (2011). SOILVISION, A knowledge-based soils database. User’s manual. Saskatoon, Saskatchewan, Canada. https://d3pcsg2wjq9izr.cloudfront.net/files/3801/download/86801/17.SoilVision_Users_Manual.pdf

Fredlund, M., & Haihua, L. (2011). ACUMESH, 2D/3D visualization software. User’s manual. Saskatoon, Saskatchewan, Canada.

Gnip, I., Vėjelis, S., & Keršulis, V. (2001). The equilibrium moisture content of low-density thermal insulating materials. Journal of Civil Engineering and Management, 7(5), 359–365. https://doi.org/10.3846/13921525.2001.10531754

Göbel, C. (2007). Frost protective layer in track substructure (Frostschutzschicht im Eisenbahnunterbau). EI-Eisenbahningenieur, 58(2), 6–12 (in German).

Göbel, C., Lieberenz, K. (2013). Handbook, Earthworks of the Railways: Planning – Dimensioning – Building – Maintenance (Handbuch, Erdbauwerke der Bahnen: Plannung – Bemessung – Ausführung – Instandhaltung). DW Media Group GmbH, Eurailpress (in German).

He, H., Zhao, Y., Dyck, M. F., Si, B., Jin, H., Lv, J., & Wang, J. (2017). A modified normalized model for predicting effective soil thermal conductivity. Acta Geotechnica, 12(6), 1281–1300. https://doi.org/10.1007/s11440-017-0563-z

IMKO. (2017). User manual TRIME® - PICO T3/IPH44 and T3/ IPH50. https://s3.amazonaws.com/mesasystemscowp/wp-content/uploads/2017/09/Manual_TRIME-PICO-IPH1.pdf

Isowall Group. (2018). A brief history of polystyrene. https://www. isowall.co.za/a-brief-history-of-polystyrene/

Ižvolt, L. (2008). Railway substructure – stress, diagnostics, design and implementation of body construction layers of railway subgrade (Scientific monograph). University of Žilina (in Slovak).

Ižvolt, L., Dobeš, P., & Hodás, S. (2019). Experimental monitoring and numerical modeling of the thermal regime of selected track substructures. Transport Problems, 14(4), 89–100. https://doi.org/10.20858/tp.2019.14.4.8

Ižvolt, L., Dobeš, P., & Mečár, M. (2013). Contribution to the methodology of the determination of the thermal conductivity coefficients λ of materials applied in the railway subbase structure. Communications, 4, 9–17.

Kou, J., Teng, J., & Zhang, S. (2018). Experimental study on the unfrozen water content and pore size distribution of frozen soil. Journal of Xi´An University of Science and Technology, 2, 246–252. https://doi.org/10.13800/j.cnki.xakjdxxb.2018.0211

Kömle, N. I., Bing, H., Feng, W. J., Wawrzaszek, R., Hütter, E. S., He, P., Marczewski, W., Dabrowski, B., Schröer, K., & Spohn, T. (2007). Thermal conductivity measurements of road construction materials in frozen and unfrozen state. Acta Geotechnica, 2(2), 127–138. https://doi.org/10.1007/s11440-007-0032-1

Kömle, N. I., Hütter, E. S., & Feng, W. J. (2010). Thermal conductivity measurements of coarse-grained gravel materials using a hollow cylindrical sensor. Acta Geotechnica, 5(4), 211–223. https://doi.org/10.1007/s11440-010-0126-z

Long, X., Cen, G., Cai, L., & Chen, Y. (2018). Experimental research on frost heave characteristics of gravel soil and multifactor regression prediction. Advances in Materials Science and Engineering, Article ID 5682619. https://doi.org/10.1155/2018/5682619

Lu, J., Pei, W., Zhang, X., Bi, J., & Zhao, T. (2019). Evaluation of calculation models for the unfrozen water content of freezing soils. Journal of Hydrology, 575, 976–985. https://doi.org/10.1016/j.jhydrol.2019.05.031

Nurmikolu, A., & Kolisoja, P. (2005). Extruded polystyrene (XPS) foam frost insulation boards in railway structures. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering. Osaka, Japan. https://doi.org/10.3233/978-1-61499-656-9-1761

Pentland, J. S. (2000). Use of a general partial differential equation solver for solution of heat and mass transfer problems in soils [Master thesis]. University of Saskatchewan, Faculty of Civil Engineering, Department of Civil and Geological Engineering. https://harvest.usask.ca/handle/10388/11704

Pieš, J. (2020). Numerical and experimental analysis of the impact of non-traffic load on the construction thickness of the protective layer of the track bed [Doctoral dissertation]. University of Žilina, Faculty of Civil Engineering, Department of Railway Engin eering and Track Management.

Pieš, J., Ižvolt, L., & Dobeš, P. (2019). Experimental Monitoring of Moisture Conditions in the Various Types of Track Bed Structure. In Proceedings of the 5th World Multidisciplinary Earth Sciences Symposium (WMESS 2019). Prague, Czech Republic. https://doi.org/10.1088/1755-1315/362/1/012075

Pieš, J., & Môcová, L. (2019). Application of TDR test probe for determination of moisture changes of railway substructure materials. In Proceedings of the 13th International Scientific Conference on Sustainable, Modern and Safe Transport (TRANSCOM 2019). Nový Smokovec, Slovak Republic. https://doi.org/10.1016/j.trpro.2019.07.013

SoilVision. (2019). About. https://soilvision.com/company/about

Soliman, H., Kass, S., & Fleury, N. (2008). A simplified model to predict frost penetration for Manitoba soils. In Proceedings of the Annual Conference of the Transportation Association of Canada. Toronto, Ontario, Canada.

Styrodur. (2019). Load-bearing and floor insulation. https://static1.squarespace.com/static/53f9d90ee4b0572e560769f8/t/54bbe72be4b0567044c061c0/1421600555419/Styrodur+Floor+Application+Brochure.pdf

Tam, A. (2009). Permafrost in Canada’s Subarctic Region of Northern Ontario [Master thesis]. University of Toronto. https://tspace.library.utoronto.ca/bitstream/1807/18954/6/Tam_Andrew_200911_MSc_thesis.pdf

Thode, R. (2012). SVHEAT, 2D/3D Geothermal modeling software. Tutorial manual. Saskatoon, Saskatchewan, Canada.

Thode, R., & Zhang, J. (2012). SVHEAT, 1D/2D/3D Geothermal modeling software. Theory manual. Saskatoon, Saskatchewan, Canada.

Wang, P., & Zhou, G. (2018). Frost-heaving pressure in geotechnical engineering materials during freezing process. International Journal of Mining Science and Technology, 28(2), 287–296. https://doi.org/10.1016/j.ijmst.2017.06.003

Wang, T., Yue, Z., Ma, CH., & Wu, Z. (2014). An experimental study on the frost heave properties of coarse grained soils. Transportation Geotechnics, 1(3), 137–144. https://doi.org/10.1016/j.trgeo.2014.06.007

Zhang, C., & Liu, Z. (2018). Freezing of water confined in porous materials: role of adsorption and unfreezable threshold. Acta Geotechnica, 13(5), 1203–1213. https://doi.org/10.1007/s11440-018-0637-6

Zhou, G., Zhou, Y., Hu, K., Wang, Y., & Shang, X. (2018). Separate-ice frost heave model for one-dimensional soil freezing process. Acta Geotechnica, 13(1), 207–217. https://doi.org/10.1007/s11440-017-0579-4