Share:


Non-equidistant “Basic Form”-focused Grey Verhulst Models (NBFGVMs) for ill-structured socio-economic forecasting problems

    Mohammad Hashem-Nazari Affiliation
    ; Akbar Esfahanipour Affiliation
    ; S.M.T. Fatemi Ghomi Affiliation

Abstract

Multiple uncertainties complicate socio-economic forecasting problems, especially when relying on ill-conditioned limited data. Such problems are best addressed by grey prediction models such as Grey Verhulst Model (GVM). This paper resolves the incompatibility between GVM’s estimation and prediction by taking its basic form equation as the basis of both. The resultant “Basic Form”-focused GVM (BFGVM) is also further developed to create Direct Non-equidistant BFGVM (DNBFGVM) and, in turn, DNBFGVM with Recursive simulation (DNBFGVMR). Experimental analyses comprise 19 socio-economic time series with an emphasis on Iranian population, a low-frequency non-equidistant time series with remarkable strategic importance. Promisingly, the proposed DNBFGVM and DNBFGVMR provide accurate in-sample and out-of-sample socio-economic forecasts, show highly significant improvements over the best traditional GVM, and offer cost-effective intelligent support of decision-making. Final results suggest future trends of studied socio-economic time series. Specifically, they reveal Iranian population to grow even slower than anticipated, demanding an urgent consideration of policy-makers.

Keyword : grey system theory, direct grey Verhulst model, discretisation, limited data, population forecasting, nonparametric statistical tests

How to Cite
Hashem-Nazari, M., Esfahanipour, A., & Ghomi, S. F. (2017). Non-equidistant “Basic Form”-focused Grey Verhulst Models (NBFGVMs) for ill-structured socio-economic forecasting problems. Journal of Business Economics and Management, 18(4), 676-694. https://doi.org/10.3846/16111699.2017.1337045
Published in Issue
Aug 27, 2017
Abstract Views
700
PDF Downloads
561
SM Downloads
285
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.