Share:


Quantitative View Assessment (QUVIAS) method for window visibility analysis utilizing BIM, GIS and Web environments

    Danylo Shkundalov   Affiliation
    ; Tatjana Vilutienė   Affiliation

Abstract

The developers of the construction project assess the economic feasibility of the project at the early stages of project development and analyse possible alternative solutions. This research focuses on the assessment of property attractiveness and building location problems at an early stage of project development and proposes the original method for visibility analysis based on the utilization of Building Information Modelling (BIM), Geographic Information System (GIS) and Web environments. The proposed Quantitative View Assessment (QUVIAS) method allows to assess the view mathematically and presents it as a quantitative parameter. The proposed method considers the mathematical shape of the view as a sphere and utilizes spherical coordinates that remove distortions and increase the accuracy of the analysis. The presented approach determines quantitative view coefficients for alternatives of windows, premises and buildings, including their comparison. The way of determining the view proposed in the QUVIAS method can help decision-makers to make more accurate decisions during the selection of a project development strategy. The experimental analysis proved the usefulness of the proposed QUVIAS method in the assessment of the rational building location and prediction of project revenues as well as potential usefulness in the estimation of property attractiveness.

Keyword : Building Information Modelling (BIM), GIS, Web, QUVIAS, project planning, building location, visibility analysis

How to Cite
Shkundalov, D., & Vilutienė, T. (2022). Quantitative View Assessment (QUVIAS) method for window visibility analysis utilizing BIM, GIS and Web environments. International Journal of Strategic Property Management, 26(4), 287–304. https://doi.org/10.3846/ijspm.2022.17754
Published in Issue
Oct 18, 2022
Abstract Views
501
PDF Downloads
444
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Antucheviciene, J., Kala, Z., Marzouk, M., & Vaidogas, E. R. (2015). Solving civil engineering problems by means of fuzzy and stochastic MCDM methods: current state and future research. Mathematical Problems in Engineering, 2015, 362579. https://doi.org/10.1155/2015/362579

Apstex. (2022, January 11). IFC Framework. www.apstex.com

Arribas, I., Garcia, F., Guijarro, F., Oliver, J., & Tamošiūnienė, R. (2016). Mass appraisal of residential real estate using multilevel modelling. International Journal of Strategic Property Management, 20(1), 77–87. https://doi.org/10.3846/1648715X.2015.1134702

Autodesk Revit. (2022, January 12). Family instances. https://knowledge.autodesk.com/support/revit/learn-explore/caas/CloudHelp/cloudhelp/2014/ENU/Revit/files/GUID-26DDC06E-9E66-467A-AF71-23DF24666C16-htm.html

Baranzini, A., & Schaerer, C. (2011). A sight for sore eyes: assessing the value of view and land use in the housing market. Journal of Housing Economics, 20(3), 191–199. https://doi.org/10.1016/j.jhe.2011.06.001

Bauer, M., & Craig, I. K. (2008). Economic assessment of advanced process control – a survey and framework. Journal of Process Control, 18, 2–18. https://doi.org/10.1016/j.jprocont.2007.05.007

Baušys, R., Juodagalvienė, B., Žiūrienė, R., Pankrašovaitė, I., Kamarauskas, J., Usovaitė, A., & Gaižauskas, D. (2020). The residence plot selection model for family house in Vilnius by neutrosophic WASPAS method. International Journal of Strategic Property Management, 24(3), 182–196. https://doi.org/10.3846/ijspm.2020.12107

Benson, E. D., Hansen, J. L., Schwartz, A. L., & Smersh, G. T. (1998). Pricing residential amenities: the value of a view. The Journal of Real Estate Finance and Economics, 16(1), 55–73. https://doi.org/10.1023/A:1007785315925

Bentley. (2022, January 15). ContextCapture. https://www.bentley.com/software/contextcapture/

Bin, O., Poulter, B., Dumas, C. F., & Whitehead, J. C (2011). Measuring the impact of sea-level rise on coastal real estate: a hedonic property model approach. Journal of Regional Science, 51, 751–767. https://doi.org/10.1111/j.1467-9787.2010.00706.x

Binoy, B. V., Naseer, M. A., & Anil Kumar, P. P. (2020). A methodology for identifying critical factors influencing land value in urban areas: a case study of Kerala, India. Property Management, 38(5), 665–681. https://doi.org/10.1108/PM-01-2020-0004

Bond, M., Seiler, V., & Seiler, M. (2002). Residential real estate prices: a room with a view. Journal of Real Estate Research, 23(1/2), 129–137. https://doi.org/10.1080/10835547.2002.12091077

Bourassa, S. C., Hoesli, M., & Sun, J. (2004). What’s in a view? Environment and Planning A, 36(8), 1427–1450. https://doi.org/10.1068/a36103

buildingSMART. (2022, January 20). IfcWallStandardCase. https://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/TC1/HTML/ifcsharedbldgelements/lexical/ifcwallstandardcase.htm

Carswell, J. D., Gardiner, K., & Yin, J. (2010). Mobile visibility querying for LBS. Transactions in GIS, 14(6), 791–809. https://doi.org/10.1111/j.1467-9671.2010.01230.x

Chen, J.-H., Yang, L.-R., Azzizi, V. T., Chu, E., & Wei, H.-H. (2020). Establishing dynamic impact function for house pricing based on surrending multi-attributes: evidence from Taipei city, Taiwan. International Journal of Strategic Property Management, 24(2), 119–129. https://doi.org/10.3846/ijspm.2020.11096

Colwell, P. F., Cannaday, R. E., & Wu, C. (1983). The analytical foundations of adjustment grid methods. Real Estate Economics, 11(1), 11–29. https://doi.org/10.1111/1540-6229.00277

Correll, M. (1977). Early time measurements. The Physics Teacher, 15(8), 476–479. https://doi.org/10.1119/1.2339739

Crompton, J. L., & Nicholls, S. (2019). The impact of park views on property values. Leisure Sciences, 1–13. https://doi.org/10.1080/01490400.2019.1703125

Esri ArcGIS. (2021, May 18). Property value analysis. https://www.esri.com/en-us/industries/land-administration/strategies/value-analysis

Gröger, G., Kolbe, T. H., & Czerwinski, A. (Eds.). (2006). Candidate OpenGIS® CityGML implementation specification (City geography markup language). Open Geospatial Consortium, Inc. https://portal.ogc.org/files/?artifact_id=16675

Hamilton, S. E., & Morgan, A. (2010). Integrating lidar, GIS and hedonic price modeling to measure amenity values in urban beach residential property markets. Computers, Environment and Urban Systems, 34(2), 133–141. https://doi.org/10.1016/j.compenvurbsys.2009.10.007

Helbich, M., & Griffith, D. A. (2016). Spatially varying coefficient models in real estate: eigenvector spatial filtering and alternative approaches. Computers, Environment and Urban Systems, 57, 1–11. https://doi.org/10.1016/j.compenvurbsys.2015.12.002

International Valuation Standards Council. (2022, January 31). International Valuation Standards. https://www.rics.org/contentassets/542170a3807548a28aebb053152f1c24/ivsc-effective-31-jan-2022.pdf

International WELL Building Institute. (2022, January 11). The WELL Building Standard 2019. https://a.storyblok.com/f/52232/x/a966fd0d94/well-v1-with-q3-2019-addenda_final.pdf

Ja’afar, N. S., Mohamad, J., & Ismail, S. (2021). Machine learning for property price prediction and price valuation: a systematic literature review. Planning Malaysia Journal, 19(3), 411–422. https://doi.org/10.21837/pm.v19i17.1018

Jegelavičiūtė, R. (2017). Lyginamojo metodo pataisos kriterijų įtaka nekilnojamojo turto vertei (2 leidimas). Lituka ir Ko. https://portal.issn.org/resource/ISSN/2424-3809

Jenkins, S. T., & Hilkert, J. M. (1989). Line of sight stabilization using image motion compensation. SPIE 1989 Technical Symposium on Aerospace Sensing, 1111, 1–18. https://doi.org/10.1117/12.977973

Jim, C. Y., & Chen, W. Y. (2006). Impacts of urban environmental elements on residential housing prices in Guangzhou (China). Landscape and Urban Planning, 78(4), 422–434. https://doi.org/10.1016/j.landurbplan.2005.12.003

Jim, C. Y., & Chen, W. Y. (2009). Value of scenic views: hedonic assessment of private housing in Hong Kong. Landscape and Urban Planning, 91(4), 226–234. https://doi.org/10.1016/j.landurbplan.2009.01.009

Jim, C. Y., & Chen, W. Y. (2010). External effects of neighbourhood parks and landscape elements on high-rise residential value. Land Use Policy, 27(2), 662–670. https://doi.org/10.1016/j.landusepol.2009.08.027

Jusuf, S. K., Mousseau, B., Godfroid, G., & Soh, J. H. V. (2017). Path to an integrated modelling between IFC and CityGML for neighborhood scale modelling. Urban Science, 1(3), 25. https://doi.org/10.3390/urbansci1030025

Kaklauskas, A., Zavadskas, E. K., Banaitis, A., & Šatkauskas, G. (2007). Defining the utility and market value of a real estate: a multiple criteria approach. International Journal of Strategic Property Management, 11(2), 107–120. https://doi.org/10.3846/1648715X.2007.9637564

Kara, A., Van Oosterom, P., Cagdas, V., Isıkdag, U., & Lemmen, C. (2020). 3 dimensional data research for property valuation in the context of the LADM valuation information model. Land Use Policy, 98, 104179. https://doi.org/10.1016/j.landusepol.2019.104179

Kerkovits, K. (2020). Quadrature rules to calculate distortions of map projections. Cartographic Journal, 57(3), 249–260. https://doi.org/10.1080/00087041.2020.1714278

Khronos Group. (2022, January 11). WebGL – Low-level 3D graphics API based on OpenGL ES. https://www.khronos.org/webgl

Laga, H., Guo, Y., Tabia, H., Fisher, R. B., & Bennamoun, M. (2018). 3D shape analysis: fundamentals, theory, and applications. John Wiley & Sons. https://doi.org/10.1002/9781119405207

Lagner, O., Klouček, T., & Šimova, P. (2018). Impact of input data (in) accuracy on overestimation of visible area in digital viewshed models. PeerJ, 6, e4835. https://doi.org/10.7717/peerj.4835

Lake, I. R., Lovett, A. A., Bateman, I. J., & Day, B. (2000). Using GIS and large-scale digital data to implement hedonic pricing studies. International Journal of Geographical Information Science, 14(6), 521–541. https://doi.org/10.1080/136588100415729

Lake, I. R., Lovett, A. A., Bateman, I. J., & Langford, I. H. (1998). Modelling environmental influences on property prices in an urban environment. Computers, Environment, and Urban Systems, 22(2), 121–136. https://doi.org/10.1016/S0198-9715(98)00012-X

Liu, L., Zhang, L., Ma, J., Zhang, L., Zhang, X., Xiao, Z., & Yang, L. (2010). An improved line-of-sight method for visibility analysis in 3D complex landscapes. Science China Information Sciences, 53(11), 2185–2194. https://doi.org/10.1007/s11432-010-4090-x

Lutzenhiser, M., & Netusil, N. R. (2001). The effect of open spaces on a home’s sale price. Contemporary Economic Policy, 19(3), 291–298. https://doi.org/10.1093/cep/19.3.291

Maliene, V. (2011). Specialised property valuation: multiple criteria decision analysis. Journal of Retail and Leisure Property, 9(5), 443–450. https://doi.org/10.1057/rlp.2011.7

Nejad, M. Z., Lu, J., & Behbood, V. (2017). Applying dynamic Bayesian tree in property sales price estimation. In 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE) (pp. 1–6), Nanjing, China. https://doi.org/10.1109/ISKE.2017.8258810

Open Source BIM. (2022, January 10). BIMServer. www.bimserver.org

OpenStreetMap. (2021a, October 1). OSM editing API v0.6. https://wiki.openstreetmap.org/wiki/API_v0.6

OpenStreetMap. (2021b, October 1). Overpass API. https://wiki.openstreetmap.org/wiki/Overpass_API

OpenStreetMap. (2021c, October 1). Overpass manual. https://dev.overpass-api.de/overpass-doc/en/

Othman, F., Yusoff, Z. M., & Rasam, A. A. (2019). Isovist and Visibility Graph Analysis (VGA): strategies to evaluate visibility along movement pattern for safe space. IOP Conference Series: Earth and Environmental Science, 385/1, 012024. https://doi.org/10.1088/1755-1315/385/1/012024

Oud, D. A. J. (2017). GIS based property valuation: objectifying the value of view [MSc thesis]. Geographical Information Management and Applications. https://studenttheses.uu.nl/handle/20.500.12932/27949

Pagourtzi, E., Assimakopoulos, V., Hatzichristos, T., & French, N. (2003). Real estate appraisal: a review of valuation methods. Journal of Property Investment & Finance, 21(4), 383–401. https://doi.org/10.1108/14635780310483656

Petrasova, A., Harmon, B., Petras, V., & Mitasova, H. (2015). Viewshed analysis. In A. Petrasova, B. Harmon, V. Petras, & H. Mitasova (Eds.), Tangible modeling with open source GIS (pp. 77–82). Springer International Publishing. https://doi.org/10.1007/978-3-319-25775-4_6

Rafiee, A., Dias, E., Fruijtier, S., & Scholten, H. (2014). From BIM to Geo-analysis: view coverage and shadow analysis by BIM/GIS integration. Procedia Environmental Sciences, 22, 397–402. https://doi.org/10.1016/j.proenv.2014.11.037

Rosen, S. (1974). Hedonic prices and implicit markets: product differentiation in pure competition. Journal of Political Economy, 82(1), 34–55. https://doi.org/10.1086/260169

Sander, H. A., & Polasky, S. (2009). The value of views and open space: estimates from a hedonic pricing model for Ramsey County, Minnesota, USA. Land Use Policy, 26(3), 837–845. https://doi.org/10.1016/j.landusepol.2008.10.009

Schläpfer, F., Waltert, F., Segura, L., & Kienast, F. (2015). Valuation of landscape amenities: a hedonic pricing analysis of housing rents in urban, suburban and periurban Switzerland. Landscape and Urban Planning, 141, 24–40. https://doi.org/10.1016/j.landurbplan.2015.04.007

Shkundalov, D., & Vilutienė, T. (2019a). A new approach for extending the possibilities of collaboration between BIM, GIS and Web environments to increase the efficiency of building space management. In 13th International Conference “Modern Building Materials, Structures and Techniques” (pp. 670–674), Vilnius, Lithuania. https://doi.org/10.3846/mbmst.2019.057

Shkundalov, D., & Vilutienė, T. (2019b). The analysis of Web technologies for BIM model processing. In 17th International Colloquium “Sustainable Decisions in Built Environment” (pp. 1–4), Vilnius, Lithuania. https://doi.org/10.3846/colloquium.2019.009

Shkundalov, D., & Vilutienė, T. (2020). Building management system in WebBIM environment. In 11th International Conference “Environmental Engineering” (pp. 1–5), Vilnius, Lithuania. https://doi.org/10.3846/enviro.2020.725

Shkundalov, D., & Vilutienė, T. (2021). Bibliometric analysis of building information modeling, geographic information systems and web environment integration. Automation in Construction, 128, 103757. https://doi.org/10.1016/j.autcon.2021.103757

Sirmans, S., Macpherson, D., & Zietz, E. (2005). The composition of hedonic pricing models. Journal of Real Estate Literature, 13(1), 1–44. https://doi.org/10.1080/10835547.2005.12090154

Sivtsev, D. (1940). Shrifty i tablitsy dlya issledovaniya ostroty zreniya. Russian Ophthalmological Journal, 4(2), 136–158. https://search.rsl.ru/ru/record/01005228070

Snellen, H. (1862). Probebuchstaben zur bestimmung der sehschärfe. Nabu Press. https://books.google.com/books?hl=lt&lr=&id=zz4JAAAAIAAJ&oi=fnd&pg=PA3&dq=Probebuchstaben+zur+Bestimmung+der+Sehsch%C3%A4rfe&ots=Ftj5Q78fsL&sig=gu4KLSSWSiTMpiPc4QtE9SM7bcY

Travis, M. R., Elsner, G. H., Iverson, W. D., & Johnson, C. G. (1975). VIEWIT: computation of seen areas, slope, and aspect for land-use planning (USDA Forest Service General Technical Report, PSW-11). https://play.google.com/store/books/details?id=QIhxNyfyeg0C&rdid=book-QIhxNyfyeg0C&rdot=1

Trigaux, D., Oosterbosch, B., Allacker, K., & Troyer, F. (2015). A design tool to optimize solar gains and energy use in neighbourhoods. PLEA 2015: Architecture in (R)Evolution, 1, 1–8. https://lirias.kuleuven.be/retrieve/335145

Tyrvainen, L. (1997). The amenity value of the urban forest: an application of the hedonic pricing method. Landscape and Urban Planning, 37(3–4), 211–222. https://doi.org/10.1016/S0169-2046(97)80005-9

Wen, H., Xiao, Y., & Zhang, L. (2017). Spatial effect of river landscape on housing price: an empirical study on the Grand Canal in Hangzhou, China. Habitat International, 63, 34–44. https://doi.org/10.1016/j.habitatint.2017.03.007

Wrozynski, R., Pyszny, K., & Sojka, M. (2020). Quantitative landscape assessment using LiDAR and rendered 360 panoramic images. Remote Sensing, 12(3), 386. https://doi.org/10.3390/rs12030386

Yamagata, Y., Murakami, D., Yoshida, T., Seya, H., & Kuroda, S. (2016). Value of urban views in a bay city: hedonic analysis with the spatial multilevel additive regression (SMAR) model. Landscape and Urban Planning, 151, 89–102. https://doi.org/10.1016/j.landurbplan.2016.02.008

Yang, P. P. J., Putra, S. Y., & Li, W. (2007). Viewsphere: a GIS-Based 3D visibility analysis for urban design evaluation. Environment and Planning B: Planning and Design, 34(6), 971–992. https://doi.org/10.1068/b32142

Yu, H., Liu, Y., & Zhang, C. (2014). Using 3D geographic information system to improve sales comparison approach for real estate valuation [Paper presentation]. XXV FIG Congress, Kuala Lumpur, Malaysia. www.fig.net/resources/proceedings/fig_proceedings/fig2014/papers/ts02e/TS02E_yu_liu_7057.pdf

Yu, S., Sheng, S., & Chai, C. (2007). Modeling the value of view in high-rise apartments: A 3D GIS approach. Environment and Planning B: Planning and Design, 34(1), 139–153. https://doi.org/10.1068/b32116

Zavadskas, E. K., Kaklauskas, A., Bausys, R., Naumcik, A., & Ubarte, I. (2021). Integrated hedonic-utilitarian valuation of the built environment by neutrosophic INVAR method. Land Use Policy, 101, 105150. https://doi.org/10.1016/j.landusepol.2020.105150

Zhou, Q., Lees, B., & Tang, G. A. (2008). Advances in digital terrain analysis. In Lecture notes in geoinformation and cartography (pp. 181–200). Springer. https://doi.org/10.1007/978-3-540-77800-4